
Citation: | XIAO Biao, YANG Bin, HU Chaojie, XIANG Yanxun, XUAN Fuzhen. Structural Health Monitoring of Filament Wound Pressure Vessel by Embedded Strain Gauges[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 043401. doi: 10.11858/gywlxb.20190726 |
为了适应现代战场复杂多变的作战环境,武器系统正朝着信息化、精确化和多功能化发展。这就要求武器系统能够自动识别目标类型,从而自适应地在多种模态中选择特定作战模式,以此打击多种目标。在众多弹药系统中,多模战斗部[1]是当前战斗部发展的主要方向之一。它是在同一成型装药[2]的基础上采用不同起爆方式来实现射流(JET)、杆式射流(JPC)、爆炸成型弹丸(EFP)或破片等多种毁伤模式的转换[3]。2001年,Bender等[3]率先开展了多模技术的基础性研究。近年来,Arnold等[4]发展了一种新型切换模式战斗部技术。对此我国很多学者也开展了大量研究,例如:Li等[5]研究了聚能装药长径比对多模毁伤元成型参数的影响;纪冲等[6]对同一成型装药结构实现EFP和多爆炸成型弹丸(MEFP)的双模转换战斗部开展了研究;杨亚东等[7]、樊菲[8]、李伟兵等[9]对于同一成型装药结构实现JPC与JET的双模转换进行了研究。然而,对于成型装药药型罩上、下壁厚变化对JPC和JET转换的影响,以及将药型罩上、下壁厚与其他药型罩结构参数进行匹配设计的研究工作,国内外较少见诸报道。
本研究利用LS-DYNA有限元软件对JPC与JET的转换过程进行数值模拟,分析药型罩锥角和壁厚对JPC与JET转化的影响,并对JPC与JET转换的双模战斗部成型装药结构参数进行正交设计,对数值模拟结果进行分析,结合成型装药结构优化指标(毁伤元头部速度、毁伤元成型状态),获得最佳药型罩结构参数,并进行双模毁伤元X射线成像试验验证,为双模转换战斗部结构的进一步优化设计提供参考。
本研究的成型装药结构如图1所示,其装药口径De为100.0 mm,药型罩采用大锥角罩,顶部倒角,其结构参数包括倒角弧度半径R、壁厚h、上壁厚h1、下壁厚h2。通过改变药型罩结构参数设计方案,分析不同药型罩结构参数对聚能毁伤元成型的影响规律。成型装药为船尾形,装药高度L = 0.90De。根据成型装药的相关研究结果[10]可知:装药顶端中心单点起爆(起爆方式1)形成JPC毁伤元;装药船尾底端环起爆(起爆方式2)形成JET毁伤元,其中起爆环距离装药顶点56.5 mm。JPC头部速度一般为3~5 km/s,JPC成型仿真结果见图2(a);JET头部速度一般为5~10 km/s,JET成型仿真结果见图2(b)[11]。
聚能装药的作用过程是多物质相互作用的大变形运动过程,在金属射流形成过程中炸药和药型罩材料会发生愈来愈剧烈的变形,采用Lagrange方法难以准确模拟。因此,本研究采用LS-DYNA的多物质ALE(Arbitrary Lagrange-Euler)方法和运动网格法,模拟JET和JPC的形成、延展和断裂。对于多物质ALE方法,除了聚能装置外,还需要建立足以覆盖整个射流范围的空气网格,并且在模型边界施加压力流出边界条件,避免压力在边界上反射。计算中各部分的材料参数及计算模型[9, 12]如表1所示,其中ρ为密度。
Component | Material | ρ/(g·cm−3) | Material model | Equation of state |
Liner | Copper | 8.960 | Johnson_Cook | Grüneisen |
Explosive | 8701 | 1.695 | High_Explosive_Burn | JWL |
Air | 1.250 × 10−3 | Null | Grüneisen |
药型罩是影响聚能毁伤元成型效果和成型质量的最关键部件。药型罩结构参数直接影响毁伤元成型的形态。为了寻找双模战斗部正交设计中正交表所需的药型罩结构参数的取值范围,首先研究药型罩结构参数对双模毁伤元成型的影响规律。仿真计算方案如表2所示,分别分析大锥角罩的锥角α、壁厚h、上壁厚h1和下壁厚h2对毁伤元转换的影响(研究变壁厚时,h为变量,故变壁厚方案中h未取值)。
Project | De/mm | L/mm | α/(°) | h/mm | h1/mm | h2/mm | R/mm | Initiation mode |
1 | 100.0 | 0.90De | 70−100 | 0.051De | 0.10De | 1, 2 | ||
2 | 100.0 | 0.90De | 85, 90 | 0.030De−0.070De | 0.10De | 1, 2 | ||
3 | 100.0 | 0.90De | 85 | 0.035De−0.055De | 0.055De | 0.10De | 1, 2 | |
95 | 0.050De | 0.050De−0.030De |
针对方案1,研究70°~100°锥角下药型罩的成型情况(每隔5°为一个工况)。选取毁伤元成型时刻为100 μs时的结果,获得了毁伤元头部速度vtip随药型罩锥角的变化曲线,如图3(a)所示。以药型罩锥角α = 90°工况为例,毁伤元成型图见图3(b)。从图3(a)中可以得出:在装药顶端中心单点起爆条件下,药型罩锥角α越大,毁伤元头部速度越小,降幅为1317 m/s;在装药船尾底端环起爆条件下,毁伤元头部速度也随α的增大而减小,降幅为3280 m/s;随着α的增大,两种起爆方式下毁伤元的头部速度差Δv越来越小,从70°时的3879 m/s减小到100°时的1916 m/s。
JPC头部速度为3~5 km/s,结合图3得出,对于α < 80°的情况可不作进一步研究。随着α的增大,两种起爆方式下的毁伤元头部越来越接近,不利于实现JPC与JET两种模态的转换,在此对α > 100°的情况也不作进一步研究。
针对方案2,研究0.030De~0.070De药型罩壁厚下药型罩的成型情况(每隔1 mm为一个工况)。为减少计算量,只讨论85°和90°锥角下药型罩的壁厚变化。选取毁伤元成型时刻为100 μs时的结果,获得了毁伤元头部速度与药型罩壁厚的关系曲线,如图4所示,其中右侧插图为85°和90°锥角下药型罩壁厚h = 5.0 mm时的毁伤元成型图。
从图4可以看出,药型罩壁厚越大,两种起爆方式下毁伤元头部速度差Δv越小,并逐渐趋于平稳。同时,可以观察到85°锥角下的头部速度差Δv变化较剧烈。对于85°和90°锥角的药型罩,当药型罩壁厚为0.050De时,速度差Δv趋于平稳。
针对方案3,研究在上壁厚和下壁厚其中一个量不变而另一量改变时药型罩的成型情况。为减少工作量,只研究锥角为95°、h2 = 5.0 mm条件下上壁厚在0.030De~0.050De范围(每隔0.5 mm为一个工况)和锥角为85°、h1 = 5.5 mm条件下下壁厚在0.035De~0.055De范围(每隔0.5 mm为一个工况)的头部速度变化规律。选取毁伤元成型时刻为100 μs时的结果,分析得到毁伤元头部速度与药型罩变壁厚关系曲线,如图5所示。以α = 95°、h1 = 5.0 mm、h2 = 5.0 mm以及α = 85°、h1 = 5.5 mm、h2 = 5.5 mm两种工况为例,计算得到双模毁伤元成型图,见图5右侧插图。在上壁厚不变的条件下,当下壁厚从0.050De降至0.030De时,Δv降幅为122 m/s,下壁厚减小使两种起爆方式下毁伤元的头部速度差Δv降低。在下壁厚不变的条件下,当上壁厚从0.055De降至0.035De时,Δv增幅为688 m/s,上壁厚减小使两种起爆方式下毁伤元的头部速度差Δv增大,且上壁厚较下壁厚对毁伤元头部速度差的影响更大。
正交设计是通过正交表安排多因素试验、利用统计数学原理进行数据分析的一种科学方法,符合“以尽量少的试验获得有效、足够的信息”的试验设计原则。正交表能够在因素变化范围内均衡抽样,使每次试验都具有较强的代表性。由于正交表具备均衡分散的特点,保证了全面试验的某些要求,这些试验能够较好或更好地达到试验目的。如在4因素5水平的条件下,根据L25正交表进行25次仿真计算,即可完成组合计算54 = 625次试验的内容,方便找到各个因素对最终目标的影响规律。
在双模战斗部装药高度及各部分材料确定的条件下,选择药型罩锥角α、药型罩上壁厚h1、药型罩下壁厚h2、药型罩倒角弧度半径R[7]这4个结构参数作为正交设计的4个因素,每个因素取5个水平,参与正交计算,每个因素及其对应的水平见表3。
Level | Factor | |||
α/(°) | h1 | h2 | R | |
1 | 80 | 0.03De | 0.03De | 0 |
2 | 85 | 0.04De | 0.04De | 0.05De |
3 | 90 | 0.05De | 0.05De | 0.10De |
4 | 95 | 0.06De | 0.06De | 0.15De |
5 | 100 | 0.07De | 0.07De | 0.20De |
将装药顶端单点起爆与装药船尾底端环起爆两种起爆方式下毁伤元成型后的头部速度vtip1、vtip2,以及两种起爆方式下毁伤元成型后的头部速度差Δv作为评价指标。由于JPC与JET的头部速度范围较大(JET的头部速度一般可以达到5~10 km/s,JPC的头部速度在3~5 km/s之间),且两种模态的头部速度差越大越好,即JET的头部速度尽可能大,而JPC的头部速度尽可能接近3 km/s,因此将形成最佳转换的药型罩结构条件约束为较小的JPC头部速度及较大的JET头部速度。各组合的计算结果如表4所示,其中Lα、Lh1、Lh2、LR分别为α、h1、h2、R的水平数。
Project | Lα | Lh1 | Lh2 | LR | vtip1/(m·s−1) | vtip2/(m·s−1) | Δv/(m·s−1) |
1 | 1 | 1 | 1 | 1 | 5 211 | 8 289 | 3 078 |
2 | 1 | 2 | 2 | 2 | 4 798 | 8 683 | 3 885 |
3 | 1 | 3 | 3 | 3 | 4 436 | 7 384 | 2 948 |
4 | 1 | 4 | 4 | 4 | 4 126 | 6 509 | 2 383 |
5 | 1 | 5 | 5 | 5 | 3 836 | 4 992 | 1 156 |
6 | 2 | 1 | 2 | 3 | 4 659 | 8 361 | 3 702 |
7 | 2 | 2 | 3 | 4 | 4 320 | 6 900 | 2 580 |
8 | 2 | 3 | 4 | 5 | 4 000 | 5 353 | 1 353 |
9 | 2 | 4 | 5 | 1 | 3 741 | 6 741 | 3 000 |
10 | 2 | 5 | 1 | 2 | 4 449 | 7 193 | 2 744 |
11 | 3 | 1 | 3 | 5 | 4 220 | 5 982 | 1 762 |
12 | 3 | 2 | 4 | 1 | 3 932 | 6 944 | 3 012 |
13 | 3 | 3 | 5 | 2 | 3 648 | 6 629 | 2 981 |
14 | 3 | 4 | 1 | 3 | 4 366 | 6 441 | 2 075 |
15 | 3 | 5 | 2 | 4 | 3 980 | 5 356 | 1 376 |
16 | 4 | 1 | 4 | 2 | 3 881 | 7 274 | 3 393 |
17 | 4 | 2 | 5 | 3 | 3 582 | 6 035 | 2 453 |
18 | 4 | 3 | 1 | 4 | 4 321 | 5 768 | 1 447 |
19 | 4 | 4 | 2 | 5 | 3 894 | 4 957 | 1 063 |
20 | 4 | 5 | 3 | 1 | 3 570 | 6 140 | 2 570 |
21 | 5 | 1 | 5 | 4 | 3 519 | 5 439 | 1 920 |
22 | 5 | 2 | 1 | 5 | 4 285 | 5 586 | 1 301 |
23 | 5 | 3 | 2 | 1 | 3 648 | 6 309 | 2 661 |
24 | 5 | 4 | 3 | 2 | 3 510 | 5 905 | 2 395 |
25 | 5 | 5 | 4 | 3 | 3 217 | 5 144 | 1 927 |
利用极差分析方法对25次仿真计算结果进行分析。将各列水平数相同的结果相加,记为K,5个水平的计算结果分别为K1、K2、K3、K4和K5,分别除以5,优化出每个因素的水平;将5个水平中的最大值减去最小值,得到极差S,通过S可以得到各因素对指标影响的主次顺序。表5列出了各因素影响下对应各个指标的极差S,即Svtip1、Svtip2和SΔv。
Factor | Svtip1/(m·s−1) | Svtip2/(m·s−1) | SΔv/(m·s−1) |
α | 845.6 | 1 494.8 | 649.2 |
h1 | 487.6 | 1 304.0 | 816.4 |
h2 | 861.2 | 766.0 | 408.4 |
R | 36.8 | 1 762.8 | 1 752.6 |
从表5可以看出各因素对各个指标影响的主次顺序:对vtip1的影响因素由主到次依次为h2、α、h1、R,对vtip2的影响因素由主到次依次为R、α、h1、h2,对Δv的影响因素由主到次依次为R、h1、α、h2,其中药型罩上下壁厚h1、h2是影响各个指标的重要因素。为了分析每个因素中各个水平对3个指标的影响情况,计算得到了头部速度vtip1、vtip2和头部速度差Δv随不同因素水平的变化关系,如图6所示。图6清晰地反映了各个因素对3个评价因素的影响规律,从中可以得到不同因素对同一指标的影响差别。
根据表5和图6的结果,进行各因素的最优水平组合。h1是影响Δv的第2重要因素,h1越小,Δv越大。h2是影响JPC头部速度的最主要因素,h2越大,JPC毁伤元头部速度越小,对JET头部速度以及Δv的影响较小。双模战斗部装药结构的要求:在射流尽可能不断裂的情况下,JET的头部速度越大越好,JPC和JET的头部速度差尽可能大。综合各指标要求,选择h1 = 0.05De,h2 = 0.04De,使JET既有较大的头部速度,又有较大的头部速度差。药型罩倒角弧度半径R是影响JET头部速度的最主要因素,但对JPC头部速度几乎没有影响。从仿真结果来看,R越小,JET头部速度越大,头部速度差越大,侵彻体越长。从成型效果图来看,R越小,装药船尾底端环起爆形成的JET侵彻体越细,杵体越大,不利于侵彻。综合考虑后,选择R = 0.10De。药型罩锥角α是影响两种毁伤元头部速度和头部速度差的重要因素,α越小,毁伤元头部速度越大,毁伤元头部速度差也越大。权衡考虑,选择α = 80°。
基于正交设计计算结果,选取药型罩结构参数:α = 80°,h1 = 0.05De,h2 = 0.04De,R = 0.10De。由于此工况不在正交表中,因此需要按照新优化方案进行计算,结果如图7所示。基于图1所示成型装药结构,采用优化方案,开展X射线成像试验。试验仪器主要包括成型装药、托弹架、X射线管和脉冲X光机、底片、底片保护盒等。试验过程中,将成型装药固定在一定高度的托弹架上,通过控制X射线管的出光时间,便可在底片上得到毁伤元的X射线成像照片。根据所拍摄的时间及不同毁伤元来布置靶块及炸高筒,每次靶块及炸高筒的总高度由仿真结果确定,保证毁伤元在拍摄时间通过底片盒。
试验获得了两个时刻装药顶端中心单点起爆和装药船尾底端环形多点起爆下毁伤元成型照片,选取对应时刻的仿真计算结果进行对比,如图7所示。考虑到JPC和JET的长度较长,需要用两张底片来获得完整的毁伤元成型形状,而试验中只有3个底片盒,为此在第1时刻选取两张底片拍摄完整的毁伤元形态,第2时刻用1张底片拍摄毁伤元部分形态。因为第1时刻射流尾部未完全进入底片,因此只能将两个时刻头部平均速度与仿真结果进行对比。
对毁伤元X射线照片进行数字化处理,得到了优化方案形成的毁伤元两个时刻头部速度的平均值。其中,试验获得的JPC毁伤元头部平均速度为3901 m/s,仿真计算得到的头部速度为4006 m/s;试验获得的JPC毁伤元在100 μs时的长度为353.3 mm,仿真值为351.5 mm。因底片问题,只获得了两个时刻JET毁伤元头部平均速度,为5638 m/s,相应的仿真结果为5925 m/s。从毁伤元成型结果的试验和仿真对比来看,X射线拍摄的毁伤元成型形态与仿真结果具有较好的一致性,JPC毁伤元成型参数的试验与仿真结果的相对偏差不超过5%,JET毁伤元头部平均速度的试验结果与仿真结果的相对偏差不超过10%。
(1) 通过改变起爆方式,设计并实现了双模成型装药战斗部中JPC与JET的双模转换,其中装药顶端中心单点起爆时形成了JPC,装药船尾底端环起爆时形成了JET。获得了药型罩结构参数对双模毁伤元成型的影响规律:随着药型罩锥角的增大,两种起爆方式下形成的毁伤元头部速度差Δv逐渐减小;随着药型罩壁厚增大,Δv变小,且逐渐趋于平稳;药型罩上壁厚不变、下壁厚变小时,Δv基本不变;药型罩下壁厚不变、上壁厚变小时,Δv变大。由此找出了双模毁伤元成型较佳时各参数的取值范围:药型罩锥角α为80°~100°,药型罩上壁厚h1为0.030De~0.070De,药型罩下壁厚h2为0.030De~0.070De。
(2) 通过正交设计方法,得到了药型罩各结构参数在两种起爆方式下对毁伤元头部速度和头部速度差影响的主次顺序,其中:对装药顶端中心单点起爆下毁伤元头部速度的影响因素由主到次依次为下壁厚、锥角、上壁厚、倒角弧度半径,对装药船尾底端环起爆下毁伤元头部速度的影响因素由主到次依次为倒角弧度半径、锥角、上壁厚、下壁厚,对Δv的影响因素由主到次依次为倒角弧度半径、上壁厚、锥角、下壁厚。
(3) 通过正交设计得到了双模毁伤元成型性能较佳的药型罩结构参数组合,即药型罩锥角为80°,药型罩上端壁厚为5.0 mm,药型罩下端壁厚为4.0 mm,药型罩倒角弧度半径为10.0 mm。在此装药结构下,JPC和JET的成型效果都较好,试验结果与仿真计算结果较吻合。
[1] |
缑林虎, 郑锡涛, 程勇. 平面缠绕炭纤维压力容器大变形有限元分析 [J]. 固体火箭技术, 2010, 33(2): 205–208. doi: 10.3969/j.issn.1006-2793.2010.02.019
GOU L H, ZHENG X T, CHENG Y. Large deformation finite element analysis of planar carbon fiber wound composite pressure vessel [J]. Journal of Solid Rocket Technology, 2010, 33(2): 205–208. doi: 10.3969/j.issn.1006-2793.2010.02.019
|
[2] |
郑津洋, 开方明, 刘仲强, 等. 轻质高压储氢容器 [J]. 化工学报, 2004, 55(Suppl 1): 130–133.
ZHENG J Y, KAI F M, LIU Z Q, et al. Lightweight high-pressure hydrogen tank [J]. Journal of Industry and Engineering, 2004, 55(Suppl 1): 130–133.
|
[3] |
杨斌, 章继峰, 梁文彦, 等. 玻璃纤维表面纳米SiO改性对GF/PCBT复合材料力学性能的影响 [J]. 复合材料学报, 2015, 32(3): 691–698.
YANG B, ZHANG J F, LIANG W Y, et al. Effects of glass fiber surface modified by nano-SiO2 on mechanical properties of GF/PCBT composites [J]. Acta Metallurgica Sinica, 2015, 32(3): 691–698.
|
[4] |
杨斌, 章继峰, 周利民. 玻璃纤维-碳纤维混杂增强PCBT复合材料层合板的制备及低速冲击性能 [J]. 复合材料学报, 2015, 32(2): 435–443.
YANG B, ZHANG J F, ZHOU L M. Preparation and low-velocity impact properties of glass fiber-carbon fiber hybrid reinforced PCBT composite laminate [J]. Acta Metallurgica Sinica, 2015, 32(2): 435–443.
|
[5] |
路智敏, 李强, 李卓. 基于爆破试验的CFRP固体火箭发动机壳体的可靠性设计 [J]. 复合材料学报, 2009, 26(2): 176–180. doi: 10.3321/j.issn:1000-3851.2009.02.031
LU Z M, LI Q, LI Z. Reliability design of CFRP solid rocket motor vessel based on the burst experiment [J]. Acta Metallurgica Sinica, 2009, 26(2): 176–180. doi: 10.3321/j.issn:1000-3851.2009.02.031
|
[6] |
OZEVIN D, HARDING J. Novel leak localization in pressurized pipeline networks using acoustic emission and geometric connectivity [J]. International Journal of Pressure Vessels and Piping, 2012, 92: 63–69. doi: 10.1016/j.ijpvp.2012.01.001
|
[7] |
CHOU H Y, MOURITZ A P, BANNISTER M K, et al. Acoustic emission analysis of composite pressure vessels under constant and cyclic pressure [J]. Composites Part A: Applied Science and Manufacturing, 2015, 70: 111–120. doi: 10.1016/j.compositesa.2014.11.027
|
[8] |
KHAN A, KO D K, LIM S C, et al. Structural vibration-based classification and prediction of delamination in smart composite laminates using deep learning neural network [J]. Composites Part B: Engineering, 2019, 161: 586–594. doi: 10.1016/j.compositesb.2018.12.118
|
[9] |
王晓勇, 熊建平, 高义广. X射线切线照相检测技术在纤维缠绕压力容器检测中的应用 [J]. 航天制造技术, 2011(6): 65–68.
WANG X Y, XIONG J P, GAO Y G. Application of X-ray inspection technique in detection of filament-wound pressure vessel [J]. Aerospace Manufacturing Technology, 2011(6): 65–68.
|
[10] |
杜善义, 冷劲松, 顾震隆. 用应力波技术对配橡胶内衬的复合材料板壳进行无损检测 [J]. 复合材料学报, 1993, 10(1): 65–69.
DU S Y, LENG J S, GU Z L. Non-destructive testing for composite plate and shell with rubber liner using stress wave technique [J]. Acta Metallurgica Sinica, 1993, 10(1): 65–69.
|
[11] |
乔业程, 王福强. 压力容器氢损伤的监测与检测方法 [J]. 橡塑技术与装备, 2018, 44(20): 54–56.
QIAO Y C, WANG F Q. Monitoring and detection of hydrogen damage in pressure vessels [J]. China Rubber/Plastics Technology and Equipment, 2018, 44(20): 54–56.
|
[12] |
赵海涛, 张博明, 武湛君, 等. 纤维缠绕复合材料压力容器健康监测研究进展 [J]. 压力容器, 2007, 24(3): 48–61. doi: 10.3969/j.issn.1001-4837.2007.03.012
ZHAO H T, ZHANG B M, WU Z J, et al. Development of health monitoring for filament wound composite pressure vessels [J]. Pressure Vessel Technology, 2007, 24(3): 48–61. doi: 10.3969/j.issn.1001-4837.2007.03.012
|
[13] |
BELLAN F, BULLETTI A, CAPINERI L, et al. A new design and manufacturing process for embedded Lamb waves interdigital transducers based on piezopolymer film [J]. Sensors and Actuators A, 2005, 123: 379–387.
|
[14] |
AI D, ZHU H, LUO H. Sensitivity of embedded active PZT sensor for concrete structural impact damage detection [J]. Construction and Building Materials, 2016, 111: 348–357. doi: 10.1016/j.conbuildmat.2016.02.094
|
[15] |
ANNAMDAS V G M, SOH C K. Embedded piezoelectric ceramic transducers in sandwiched beams [J]. Smart Materials and Structures, 2006, 15(2): 538–549. doi: 10.1088/0964-1726/15/2/037
|
[16] |
DZIENDZIKOWSKI M, KURNYTA A, DRAGAN K, et al. In situ barely visible impact damage detection and localization for composite structures using surface mounted and embedded PZT transducers: a comparative study [J]. Mechanical Systems and Signal Processing, 2016, 78: 91–106. doi: 10.1016/j.ymssp.2015.09.021
|
[17] |
GHIMIRE M, WANG C, DIXON K, et al. In situ monitoring of prestressed concrete using embedded fiber loop ringdown strain sensor [J]. Measurement, 2018, 124: 224–232. doi: 10.1016/j.measurement.2018.04.017
|
[18] |
WANG Y, WANG Y, HAN B, et al. Strain monitoring of concrete components using embedded carbon nanofibers/epoxy sensors [J]. Construction and Building Materials, 2018, 186: 367–378. doi: 10.1016/j.conbuildmat.2018.07.147
|
[19] |
CHOWDHURY N T, JOOSTEN M W, PEARCE G M K. An embedded meshing technique (SET) for analysing local strain distributions in textile composites [J]. Composite Structures, 2019, 210: 294–309. doi: 10.1016/j.compstruct.2018.11.026
|
[20] |
KANERVA M, ANTUNES P, SARLIN E, et al. Direct measurement of residual strains in CFRP-tungsten hybrids using embedded strain gauges [J]. Materials & Design, 2017, 127: 352–363.
|
[1] | LI Xianglong, YAN Shiqian, WANG Jianguo, YAO Yongxin, HUANG Yuanming. Precise Time-Delay Blasting Parameters of Stratified Single Blasting Well Completion[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 025302. doi: 10.11858/gywlxb.20230748 |
[2] | CHU Yakun, LI Pingfeng, LIANG Hao, LI Hongwei, LIU Wei, ZHANG Liguo, HUANG Xinxu, WU Yanmeng. Influence of Damping Materials on Blasting Vibration of Cylindrical Pool[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 065102. doi: 10.11858/gywlxb.20240780 |
[3] | CAI Penghui, LI Jinglin, SHEN Zhengxiang, ZHAI Binbin, WU Caibao, HUANG Huandong, SONG Pengfei. Plastic Limit Load and Failure of Accumulator Shell[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 034203. doi: 10.11858/gywlxb.20210867 |
[4] | BAI Hui, HUI Hu, YANG Bin, KONG Fang. Strain Response and Analysis of Pressure Vessels with Small Delamination Defects[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054203. doi: 10.11858/gywlxb.20210717 |
[5] | REN Tianbao, GAO Weikai, SU Tongfu, YU Zhengdao, YUAN Hangzhou, XU Guizhuan, SONG Andong, ZHANG Bailiang. Energy Model and Energy Consumption Analysis of Biomass Pretreatment by Instant Catapult Steam Explosion[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 055901. doi: 10.11858/gywlxb.20200532 |
[6] | ZHOU Hao, LIU Shaohu, GUAN Feng. Fatigue Life Evaluation of Coiled Tube under Coupled Load of Internal Pressure, Bending and Torsion[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044104. doi: 10.11858/gywlxb.20180611 |
[7] | LI Zhouyi, HU Zhenbiao, WANG Haokang, SUO Tao. Mechanical Properties of CFRP Composites with CNT Film Interlayer under Different Strain Rates[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024205. doi: 10.11858/gywlxb.20180658 |
[8] | REN Xianda, LIU Jiaqiong, TANG Zhen, WU Xiaogang, CHEN Weiyi. Experimental Analysis of Fatigue Performance in Transmission Lines at Different Annealing Temperatures[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045902. doi: 10.11858/gywlxb.20180566 |
[9] | YIN Xiaowen, TIAN Ze, HAN Yang, LI Zhiqiang. Numerical Simulation on Fluid Causing Fatigue of Industrial Pipeline System[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 064102. doi: 10.11858/gywlxb.20180559 |
[10] | LI Yong, XU Hui-Wen, ZHANG Jie, JIN Hui, DENG Tao, JIA Xiao-Peng. Effects of Pressure on the Sintering Properties of PCBN Composite and Sintering Mechanism[J]. Chinese Journal of High Pressure Physics, 2016, 30(5): 363-368. doi: 10.11858/gywlxb.2016.05.003 |
[11] | LIU Zhao-Xing, ZHOU Yong-Sheng, LIU Gui, HE Chang-Rong, ZHONG Ke, YAO Wen-Ming, HAN Liang, DANG Jia-Xiang. Axial Friction Calibration for 3 GPa Molten Salt Medium Triaxial Pressure Vessel under High Pressure and High Temperature[J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 19-28. doi: 10.11858/gywlxb.2013.01.002 |
[12] | GAI Fang-Fang, PANG Bao-Jun, GUAN Gong-Shun. Model for the Deceleration of Secondary Debris Produced by Hypervelocity Impact on Pressure Vessels[J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 177-184. doi: 10.11858/gywlxb.2012.02.009 |
[13] | YAN Hong-Hao, WANG Li-He, LI Xiao-Jie, WANG Bin. Experimental Investigation of Door-Explosion with Short-Delay Controlled Blasting in the Counterterrorism[J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 211-215. doi: 10.11858/gywlxb.2012.02.014 |
[14] | GAI Fang-Fang, PANG Bao-Jun, GUAN Gong-Shun. Quasi-Static Bursting Analysis of Gas-Filled Pressure Vessels on the Front Side under Hypervelocity Impact[J]. Chinese Journal of High Pressure Physics, 2011, 25(1): 48-54 . doi: 10.11858/gywlxb.2011.01.008 |
[15] | HAN Liang, ZHOU Yong-Sheng, HE Chang-Rong, YAO Wen-Ming, LIU Gui, LIU Zhao-Xing, DANG Jia-Xiang. Confined Pressure Calibration for 3 GPa Molten Salt Medium Triaxial Pressure Vessel under High Pressure and Temperature[J]. Chinese Journal of High Pressure Physics, 2011, 25(3): 213-220 . doi: 10.11858/gywlxb.2011.03.004 |
[16] | ZHANG Guo-Rong, ZHAO Xiu-Ying, GAO Yue-Kai, WU Si-Zhu. Study on the Pressure-Volume-Temperature Properties of AO-80/Nitrile Rubber Composites[J]. Chinese Journal of High Pressure Physics, 2011, 25(3): 282-288 . doi: 10.11858/gywlxb.2011.03.014 |
[17] | HAN Liang, ZHOU Yong-Sheng, DANG Jia-Xiang, HE Chang-Rong, YAO Wen-Ming. Temperature Calibration for 3 GPa Molten Salt Medium Triaxial Pressure Vessel[J]. Chinese Journal of High Pressure Physics, 2009, 23(6): 407-414 . doi: 10.11858/gywlxb.2009.06.002 |
[18] | GAI Fang-Fang, PANG Bao-Jun, GUAN Gong-Shun. Numerical Investigation on the Characteristics of Debris Clouds Produced by Hypervelocity Impact on Pressure Vessels[J]. Chinese Journal of High Pressure Physics, 2009, 23(3): 223-228 . doi: 10.11858/gywlxb.2009.03.010 |
[19] | DAI Lan-Hong, LING Zhong, BAI Yi-Long. Strain Gradient Effects on the Strengthening Behaviors of Particle Reinforced Metal Matrix Composites[J]. Chinese Journal of High Pressure Physics, 2001, 15(1): 5-11 . doi: 10.11858/gywlxb.2001.01.002 |
[20] | ZHAO Fang-Fang, LUO Jing-Run, TIAN Chang-Jin, JIN Zhou-Geng, HE Ying-Bo. The Crack Growth Process of Particulate Filled Polymer Monitored by Acoustic Emission[J]. Chinese Journal of High Pressure Physics, 2000, 14(3): 235-240 . doi: 10.11858/gywlxb.2000.03.014 |
Component | Material | ρ/(g·cm−3) | Material model | Equation of state |
Liner | Copper | 8.960 | Johnson_Cook | Grüneisen |
Explosive | 8701 | 1.695 | High_Explosive_Burn | JWL |
Air | 1.250 × 10−3 | Null | Grüneisen |
Project | De/mm | L/mm | α/(°) | h/mm | h1/mm | h2/mm | R/mm | Initiation mode |
1 | 100.0 | 0.90De | 70−100 | 0.051De | 0.10De | 1, 2 | ||
2 | 100.0 | 0.90De | 85, 90 | 0.030De−0.070De | 0.10De | 1, 2 | ||
3 | 100.0 | 0.90De | 85 | 0.035De−0.055De | 0.055De | 0.10De | 1, 2 | |
95 | 0.050De | 0.050De−0.030De |
Level | Factor | |||
α/(°) | h1 | h2 | R | |
1 | 80 | 0.03De | 0.03De | 0 |
2 | 85 | 0.04De | 0.04De | 0.05De |
3 | 90 | 0.05De | 0.05De | 0.10De |
4 | 95 | 0.06De | 0.06De | 0.15De |
5 | 100 | 0.07De | 0.07De | 0.20De |
Project | Lα | Lh1 | Lh2 | LR | vtip1/(m·s−1) | vtip2/(m·s−1) | Δv/(m·s−1) |
1 | 1 | 1 | 1 | 1 | 5 211 | 8 289 | 3 078 |
2 | 1 | 2 | 2 | 2 | 4 798 | 8 683 | 3 885 |
3 | 1 | 3 | 3 | 3 | 4 436 | 7 384 | 2 948 |
4 | 1 | 4 | 4 | 4 | 4 126 | 6 509 | 2 383 |
5 | 1 | 5 | 5 | 5 | 3 836 | 4 992 | 1 156 |
6 | 2 | 1 | 2 | 3 | 4 659 | 8 361 | 3 702 |
7 | 2 | 2 | 3 | 4 | 4 320 | 6 900 | 2 580 |
8 | 2 | 3 | 4 | 5 | 4 000 | 5 353 | 1 353 |
9 | 2 | 4 | 5 | 1 | 3 741 | 6 741 | 3 000 |
10 | 2 | 5 | 1 | 2 | 4 449 | 7 193 | 2 744 |
11 | 3 | 1 | 3 | 5 | 4 220 | 5 982 | 1 762 |
12 | 3 | 2 | 4 | 1 | 3 932 | 6 944 | 3 012 |
13 | 3 | 3 | 5 | 2 | 3 648 | 6 629 | 2 981 |
14 | 3 | 4 | 1 | 3 | 4 366 | 6 441 | 2 075 |
15 | 3 | 5 | 2 | 4 | 3 980 | 5 356 | 1 376 |
16 | 4 | 1 | 4 | 2 | 3 881 | 7 274 | 3 393 |
17 | 4 | 2 | 5 | 3 | 3 582 | 6 035 | 2 453 |
18 | 4 | 3 | 1 | 4 | 4 321 | 5 768 | 1 447 |
19 | 4 | 4 | 2 | 5 | 3 894 | 4 957 | 1 063 |
20 | 4 | 5 | 3 | 1 | 3 570 | 6 140 | 2 570 |
21 | 5 | 1 | 5 | 4 | 3 519 | 5 439 | 1 920 |
22 | 5 | 2 | 1 | 5 | 4 285 | 5 586 | 1 301 |
23 | 5 | 3 | 2 | 1 | 3 648 | 6 309 | 2 661 |
24 | 5 | 4 | 3 | 2 | 3 510 | 5 905 | 2 395 |
25 | 5 | 5 | 4 | 3 | 3 217 | 5 144 | 1 927 |
Factor | Svtip1/(m·s−1) | Svtip2/(m·s−1) | SΔv/(m·s−1) |
α | 845.6 | 1 494.8 | 649.2 |
h1 | 487.6 | 1 304.0 | 816.4 |
h2 | 861.2 | 766.0 | 408.4 |
R | 36.8 | 1 762.8 | 1 752.6 |
Component | Material | ρ/(g·cm−3) | Material model | Equation of state |
Liner | Copper | 8.960 | Johnson_Cook | Grüneisen |
Explosive | 8701 | 1.695 | High_Explosive_Burn | JWL |
Air | 1.250 × 10−3 | Null | Grüneisen |
Project | De/mm | L/mm | α/(°) | h/mm | h1/mm | h2/mm | R/mm | Initiation mode |
1 | 100.0 | 0.90De | 70−100 | 0.051De | 0.10De | 1, 2 | ||
2 | 100.0 | 0.90De | 85, 90 | 0.030De−0.070De | 0.10De | 1, 2 | ||
3 | 100.0 | 0.90De | 85 | 0.035De−0.055De | 0.055De | 0.10De | 1, 2 | |
95 | 0.050De | 0.050De−0.030De |
Level | Factor | |||
α/(°) | h1 | h2 | R | |
1 | 80 | 0.03De | 0.03De | 0 |
2 | 85 | 0.04De | 0.04De | 0.05De |
3 | 90 | 0.05De | 0.05De | 0.10De |
4 | 95 | 0.06De | 0.06De | 0.15De |
5 | 100 | 0.07De | 0.07De | 0.20De |
Project | Lα | Lh1 | Lh2 | LR | vtip1/(m·s−1) | vtip2/(m·s−1) | Δv/(m·s−1) |
1 | 1 | 1 | 1 | 1 | 5 211 | 8 289 | 3 078 |
2 | 1 | 2 | 2 | 2 | 4 798 | 8 683 | 3 885 |
3 | 1 | 3 | 3 | 3 | 4 436 | 7 384 | 2 948 |
4 | 1 | 4 | 4 | 4 | 4 126 | 6 509 | 2 383 |
5 | 1 | 5 | 5 | 5 | 3 836 | 4 992 | 1 156 |
6 | 2 | 1 | 2 | 3 | 4 659 | 8 361 | 3 702 |
7 | 2 | 2 | 3 | 4 | 4 320 | 6 900 | 2 580 |
8 | 2 | 3 | 4 | 5 | 4 000 | 5 353 | 1 353 |
9 | 2 | 4 | 5 | 1 | 3 741 | 6 741 | 3 000 |
10 | 2 | 5 | 1 | 2 | 4 449 | 7 193 | 2 744 |
11 | 3 | 1 | 3 | 5 | 4 220 | 5 982 | 1 762 |
12 | 3 | 2 | 4 | 1 | 3 932 | 6 944 | 3 012 |
13 | 3 | 3 | 5 | 2 | 3 648 | 6 629 | 2 981 |
14 | 3 | 4 | 1 | 3 | 4 366 | 6 441 | 2 075 |
15 | 3 | 5 | 2 | 4 | 3 980 | 5 356 | 1 376 |
16 | 4 | 1 | 4 | 2 | 3 881 | 7 274 | 3 393 |
17 | 4 | 2 | 5 | 3 | 3 582 | 6 035 | 2 453 |
18 | 4 | 3 | 1 | 4 | 4 321 | 5 768 | 1 447 |
19 | 4 | 4 | 2 | 5 | 3 894 | 4 957 | 1 063 |
20 | 4 | 5 | 3 | 1 | 3 570 | 6 140 | 2 570 |
21 | 5 | 1 | 5 | 4 | 3 519 | 5 439 | 1 920 |
22 | 5 | 2 | 1 | 5 | 4 285 | 5 586 | 1 301 |
23 | 5 | 3 | 2 | 1 | 3 648 | 6 309 | 2 661 |
24 | 5 | 4 | 3 | 2 | 3 510 | 5 905 | 2 395 |
25 | 5 | 5 | 4 | 3 | 3 217 | 5 144 | 1 927 |
Factor | Svtip1/(m·s−1) | Svtip2/(m·s−1) | SΔv/(m·s−1) |
α | 845.6 | 1 494.8 | 649.2 |
h1 | 487.6 | 1 304.0 | 816.4 |
h2 | 861.2 | 766.0 | 408.4 |
R | 36.8 | 1 762.8 | 1 752.6 |