Volume 33 Issue 6
Nov 2019
Turn off MathJax
Article Contents
LI Yixiao, WANG Shengjie. Material Phase Evolution in Hypervelocity Impact Process[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 064101. doi: 10.11858/gywlxb.20190723
Citation: LI Yixiao, WANG Shengjie. Material Phase Evolution in Hypervelocity Impact Process[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 064101. doi: 10.11858/gywlxb.20190723

Material Phase Evolution in Hypervelocity Impact Process

doi: 10.11858/gywlxb.20190723
  • Received Date: 29 Jan 2019
  • Rev Recd Date: 01 Mar 2019
  • It is generally known that phase evolution characteristics of materials under hypervelocity impact obtained are limited by experiments. In this paper, the material point method and GRAY three-phase equation of state were combined to simulate the hypervelocity impact of Cu-Cu, Ni-Ni and Al-Al at different velocities, and the relations between phase distribution and time were obtained. The numerical results show that the phase evolution character of the material with higher density and lower melting point at lower velocity impact is similar to the material with lower density and higher melting point at higher velocity impact. Therefore, the phase evolution characteristics of material with higher density and lower melting under hypervelocity impact point could provide reference to the experiment of common structure materials such as Al under hypervelocity impact.

     

  • loading
  • [1]
    PIEKUTOWSKI A J. Formation and description of debris clouds produced by hypervelocity impact: NASA Contractor Report 4707 [R]. USA: Marshall Space Flight Center, 1996.
    [2]
    POORMON K L, PIEKUTOWSKI A J. Comparisons of cadmium and aluminum debris clouds [J]. International Journal of Impact Engineering, 1995, 17(4/5/6): 639–648.
    [3]
    SCHMIDT R M, HOUSEN K R, PIEKUTOWSKI A J, et al. Cadmium simulation of orbital-debris shield performance to scaled velocities of 18 km/s [J]. Journal of Spacecraft and Rockets, 1994, 31(5): 866–877. doi: 10.2514/3.26525
    [4]
    唐蜜. 基于欧拉方法的超高速撞击程序研制及碎片云物相分布数值模拟[D]. 绵阳: 中国工程物理研究院, 2015: 3–8.
    [5]
    MA S, ZHANG X, QIU X M. Comparison study of MPM and SPH in modeling hypervelocity impact problems [J]. International Journal of Impact Engineering, 2009, 36(2): 272–282. doi: 10.1016/j.ijimpeng.2008.07.001
    [6]
    张雄, 廉艳平, 刘岩, 等.物质点法 [M]. 北京: 清华大学出版社, 2013: 46–50.
    [7]
    汤文辉, 张若棋. 物态方程理论及计算概论 [M]. 2版. 北京: 高等教育出版社, 2008: 159–167.
    [8]
    李依潇, 王生捷. 使用新型物态方程的超高速碰撞物质点法模拟 [J/OL]. 爆炸与冲击 [2019-01-29]. http://kns.cnki.net/kcms/detail/51.1148.O3.20181203.1126.006.html.

    LI Y X, WANG S J. Simulation of hypervelocity impact by the material point method coupled with a new equation of state [J/OL]. Explosion and Shock Waves [2019–01–29]. http://kns.cnki.net/kcms/detail/51.1148.O3.20181203.1126.006.html.
    [9]
    MULLIN S A, ANDERSON JR C E, WILBECK J S. Dissimilar material velocity scaling for hypervelocity impact [J]. International Journal of Impact Engineering, 2003, 29: 469–485. doi: 10.1016/j.ijimpeng.2003.09.043
    [10]
    ROYCE E B. GRAY, a three-phase equation of state for metals: UCRL-51121 [R]. USA: Lawrence Livermore National Laboratory, 1971.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views(7792) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return