Citation: | ZHOU Lin, WANG Zihao, WEN Heming. On the Accuracy of the Johnson-Cook Constitutive Model for Metals[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 042101. doi: 10.11858/gywlxb.20190721 |
[1] |
JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics, 1983, 21: 541–547.
|
[2] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9
|
[3] |
SEIDT J D, GILAT A. Plastic deformation of 2024-T351 aluminum plate over a wide range of loading conditions [J]. International Journal of Solids and Structures, 2013, 50(10): 1781–1790. doi: 10.1016/j.ijsolstr.2013.02.006
|
[4] |
WIERZBICKI T, BAO Y, LEE Y W. Calibration and evaluation of seven fracture models [J]. International Journal of Mechanical Sciences, 2005, 47(4): 719–743.
|
[5] |
WILKINS M L, STREIT R D, REAUGH J E. Cumulative-strain-damage model of ductile fracture: simulation and prediction of engineering fracture tests: UCRL-53058 [R]. Livermore: Lawrence Livermore National Laboratories, 1980.
|
[6] |
SCAPINA M, MANES A. Behaviour of Al6061-T6 alloy at different temperatures and strain-rates: experimental characterization and material modeling [J]. Materials Science and Engineering A, 2018, 734: 318–328. doi: 10.1016/j.msea.2018.08.011
|
[7] |
LESUER D R, KAY G J, LEBLANC M M. Modeling large-strain, high-rate deformation in metals: UCRL-JC-134118 [R]. Livermore: Lawrence Livermore National Laboratory, 2001.
|
[8] |
GILIOLI A, MANES A, GIGLIO M, et al. Predicting ballistic impact failure of aluminum 6061-T6 with the rate-independent Bao-Wierzbicki fracture model [J]. International Journal of Impact Engineering, 2015, 76(1): 207–220.
|
[9] |
BAIG M, KHAN A S, CHOI S H, et al. Shear and multiaxial responses of oxygen free high conductivity (OFHC) copper over wide range of strain-rates and temperatures and constitutive modeling [J]. International Journal of Plasticity, 2013, 40(1): 65–80.
|
[10] |
NEMAT-NASSER S, LI Y. Flow stress of FCC polycrystals with application to OFHC Cu [J]. Acta Materialia, 1998, 46: 565–577. doi: 10.1016/S1359-6454(97)00230-9
|
[11] |
GUO W G. Flow stress and constitutive model of OFHC Cu for large deformation, different temperatures and different strain rates [J]. Explosion and Shock Waves, 2005, 25(3): 244–250. doi: 10.3321/j.issn:1001-1455.2005.03.009
|
[12] |
ANAND L, KALIDINDI S R. The process of shear band formation in plane strain compression of fcc metals: effects of crystallographic texture [J]. Mechanics of Materials, 1994, 17(2): 223–243.
|
[13] |
FOLLANSBEE P S, KOCKS U F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable [J]. Acta Metallurgica, 1988, 36(1): 81–93. doi: 10.1016/0001-6160(88)90030-2
|
[14] |
MIRONE G, BARBAGALLO R, CORALLO D. A new yield criteria including the effect of lode angle and stress triaxiality [J]. Procedia Structural Integrity, 2016, 2: 3684–3696. doi: 10.1016/j.prostr.2016.06.458
|
[15] |
KHAN A S, SUH Y S, KAZMI R. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys [J]. International Journal of Plasticity, 2004, 20(12): 2233–2248. doi: 10.1016/j.ijplas.2003.06.005
|
[16] |
NEMAT-NASSER S, GUO W G, NESTERENKO V F, et al. Dynamic response of conventional and hot isostatically pressed Ti-6Al-4V alloys: experiments and modeling [J]. Mechanics of Materials, 2001, 33(8): 425–439. doi: 10.1016/S0167-6636(01)00063-1
|
[17] |
GIGLIO M, MANES A, VIGANÒ F. Ductile fracture locus of Ti-6Al-4V titanium alloy [J]. International Journal of Mechanical Sciences, 2012, 54(1): 121–135. doi: 10.1016/j.ijmecsci.2011.10.003
|
[18] |
|
[19] |
LIN L, ZHI X D, FAN F, et al. Determination of parameters of Johnson-Cook models of Q235B steel [J]. Journal of Vibration and Shock, 2014, 33(9): 153–158.
|
[20] |
GUO Z T, SHU K O, GAO B, et al. J-C model based failure criterion and verification of Q235 steel [J]. Explosion and Shock Waves, 2018, 38(6): 1325–1332. doi: 10.11883/bzycj-2017-0163
|
[21] |
MARCOS R M, DANIEL G G, ALEXIS R, et al. Influence of stress state on the mechanical impact and deformation behaviors of aluminum alloys [J]. Metals, 2018, 8(7): 520–540. doi: 10.3390/met8070520
|
[22] |
CAMPBELL J D, COOPER R H. Yield and flow of low-carbon steel at medium strain rates [C]//Proceedings of the Conference on the Physical Basis of Yield and Fracture. London: Institute of Physics and Physical Society, 1966: 77–87.
|
[23] |
JONES N. Structural impact [M]. 2nd ed. Cambridge: Cambridge University Press, 2012.
|
[24] |
CHEN G, CHEN Z F, TAO J L, et al. Investigation and validation on plastic constitutive parameters of 45 steel [J]. Explosion and Shock Waves, 2005, 25(5): 451–456. doi: 10.3321/j.issn:1001-1455.2005.05.010
|
[25] |
BAI Y, WIERZBICKI T. A comparative study of three groups of ductile fracture loci in the 3D space [J]. Engineering Fracture Mechanics, 2015, 135: 147–167. doi: 10.1016/j.engfracmech.2014.12.023
|
[26] |
WANG P, QU S. Analysis of ductile fracture by extended unified strength theory [J]. International Journal of Plasticity, 2018, 104: 196–213. doi: 10.1016/j.ijplas.2018.02.011
|