Volume 33 Issue 4
Jul 2019
Turn off MathJax
Article Contents
ZHOU Lin, WANG Zihao, WEN Heming. On the Accuracy of the Johnson-Cook Constitutive Model for Metals[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 042101. doi: 10.11858/gywlxb.20190721
Citation: ZHOU Lin, WANG Zihao, WEN Heming. On the Accuracy of the Johnson-Cook Constitutive Model for Metals[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 042101. doi: 10.11858/gywlxb.20190721

On the Accuracy of the Johnson-Cook Constitutive Model for Metals

doi: 10.11858/gywlxb.20190721
More Information
  • Author Bio:

    ZHOU Lin (1988-), female, doctoral student, major in impact dynamics. E-mail: zlxzh@mail.ustc.edu.cn

  • Corresponding author: WEN Heming (1965-), male, Ph.D, professor, major in impact dynamics. E-mail: hmwen@ustc.edu.cn
  • Received Date: 28 Jan 2019
  • Rev Recd Date: 13 Mar 2019
  • Publish Date: 25 Mar 2019
  • A critical assessment is made herein on the accuracy of the Johnson-Cook (JC) constitutive model by comparing the model predictions with the test data for 2024-T351 aluminum alloy, 6061-T6 aluminum alloy, OFHC copper, 4340 steel, Ti-6Al-4V alloys and Q235 mild steel. These materials are selected because their test data are more complete in terms of true stress-true strain relationships, strain rate effects, temperature effects and failure. To further assess its accuracy numerical results for the ballistic perforation of plates made of 2024-T351 aluminum alloy using the JC constitutive model are also presented and compared with corresponding test data. It transpires that the JC constitutive model is applicable to Mises materials at quasi-static to intermediate strain rates and low to moderate temperature. It also transpires that for non-Mises materials the agreement between the model predictions and the test results are poor in terms of shear stress-shear strain curve and fracture strain. Furthermore, the accuracy of the JC model decreases with increasing strain rate, temperature and, above all, it fails to produce consistent results at high strain rates when the experimentally obtained dynamic increase factors (DIF) are employed in the calculations implying the form of the model’s equation (namely, quasi-static stress-strain curve multiplied by DIF) may be inadequate at least for the scenarios where high strain rates are involved.

     

  • loading
  • [1]
    JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics, 1983, 21: 541–547.
    [2]
    JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9
    [3]
    SEIDT J D, GILAT A. Plastic deformation of 2024-T351 aluminum plate over a wide range of loading conditions [J]. International Journal of Solids and Structures, 2013, 50(10): 1781–1790. doi: 10.1016/j.ijsolstr.2013.02.006
    [4]
    WIERZBICKI T, BAO Y, LEE Y W. Calibration and evaluation of seven fracture models [J]. International Journal of Mechanical Sciences, 2005, 47(4): 719–743.
    [5]
    WILKINS M L, STREIT R D, REAUGH J E. Cumulative-strain-damage model of ductile fracture: simulation and prediction of engineering fracture tests: UCRL-53058 [R]. Livermore: Lawrence Livermore National Laboratories, 1980.
    [6]
    SCAPINA M, MANES A. Behaviour of Al6061-T6 alloy at different temperatures and strain-rates: experimental characterization and material modeling [J]. Materials Science and Engineering A, 2018, 734: 318–328. doi: 10.1016/j.msea.2018.08.011
    [7]
    LESUER D R, KAY G J, LEBLANC M M. Modeling large-strain, high-rate deformation in metals: UCRL-JC-134118 [R]. Livermore: Lawrence Livermore National Laboratory, 2001.
    [8]
    GILIOLI A, MANES A, GIGLIO M, et al. Predicting ballistic impact failure of aluminum 6061-T6 with the rate-independent Bao-Wierzbicki fracture model [J]. International Journal of Impact Engineering, 2015, 76(1): 207–220.
    [9]
    BAIG M, KHAN A S, CHOI S H, et al. Shear and multiaxial responses of oxygen free high conductivity (OFHC) copper over wide range of strain-rates and temperatures and constitutive modeling [J]. International Journal of Plasticity, 2013, 40(1): 65–80.
    [10]
    NEMAT-NASSER S, LI Y. Flow stress of FCC polycrystals with application to OFHC Cu [J]. Acta Materialia, 1998, 46: 565–577. doi: 10.1016/S1359-6454(97)00230-9
    [11]
    GUO W G. Flow stress and constitutive model of OFHC Cu for large deformation, different temperatures and different strain rates [J]. Explosion and Shock Waves, 2005, 25(3): 244–250. doi: 10.3321/j.issn:1001-1455.2005.03.009
    [12]
    ANAND L, KALIDINDI S R. The process of shear band formation in plane strain compression of fcc metals: effects of crystallographic texture [J]. Mechanics of Materials, 1994, 17(2): 223–243.
    [13]
    FOLLANSBEE P S, KOCKS U F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable [J]. Acta Metallurgica, 1988, 36(1): 81–93. doi: 10.1016/0001-6160(88)90030-2
    [14]
    MIRONE G, BARBAGALLO R, CORALLO D. A new yield criteria including the effect of lode angle and stress triaxiality [J]. Procedia Structural Integrity, 2016, 2: 3684–3696. doi: 10.1016/j.prostr.2016.06.458
    [15]
    KHAN A S, SUH Y S, KAZMI R. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys [J]. International Journal of Plasticity, 2004, 20(12): 2233–2248. doi: 10.1016/j.ijplas.2003.06.005
    [16]
    NEMAT-NASSER S, GUO W G, NESTERENKO V F, et al. Dynamic response of conventional and hot isostatically pressed Ti-6Al-4V alloys: experiments and modeling [J]. Mechanics of Materials, 2001, 33(8): 425–439. doi: 10.1016/S0167-6636(01)00063-1
    [17]
    GIGLIO M, MANES A, VIGANÒ F. Ductile fracture locus of Ti-6Al-4V titanium alloy [J]. International Journal of Mechanical Sciences, 2012, 54(1): 121–135. doi: 10.1016/j.ijmecsci.2011.10.003
    [18]
    GUO Z T, GAO B, GUO Z, et al Dynamic constitutive relation based on J-C model of Q235 steel Explosion and Shock Waves 2018 38 4 804 810 doi:10.11883/bzycj-2016-0333
    [19]
    LIN L, ZHI X D, FAN F, et al. Determination of parameters of Johnson-Cook models of Q235B steel [J]. Journal of Vibration and Shock, 2014, 33(9): 153–158.
    [20]
    GUO Z T, SHU K O, GAO B, et al. J-C model based failure criterion and verification of Q235 steel [J]. Explosion and Shock Waves, 2018, 38(6): 1325–1332. doi: 10.11883/bzycj-2017-0163
    [21]
    MARCOS R M, DANIEL G G, ALEXIS R, et al. Influence of stress state on the mechanical impact and deformation behaviors of aluminum alloys [J]. Metals, 2018, 8(7): 520–540. doi: 10.3390/met8070520
    [22]
    CAMPBELL J D, COOPER R H. Yield and flow of low-carbon steel at medium strain rates [C]//Proceedings of the Conference on the Physical Basis of Yield and Fracture. London: Institute of Physics and Physical Society, 1966: 77–87.
    [23]
    JONES N. Structural impact [M]. 2nd ed. Cambridge: Cambridge University Press, 2012.
    [24]
    CHEN G, CHEN Z F, TAO J L, et al. Investigation and validation on plastic constitutive parameters of 45 steel [J]. Explosion and Shock Waves, 2005, 25(5): 451–456. doi: 10.3321/j.issn:1001-1455.2005.05.010
    [25]
    BAI Y, WIERZBICKI T. A comparative study of three groups of ductile fracture loci in the 3D space [J]. Engineering Fracture Mechanics, 2015, 135: 147–167. doi: 10.1016/j.engfracmech.2014.12.023
    [26]
    WANG P, QU S. Analysis of ductile fracture by extended unified strength theory [J]. International Journal of Plasticity, 2018, 104: 196–213. doi: 10.1016/j.ijplas.2018.02.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(2)

    Article Metrics

    Article views(8168) PDF downloads(212) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return