Volume 33 Issue 3
Jun 2019
Turn off MathJax
Article Contents
GENG Huayun, SUN Yi, XIANG Shikai. Computation and Simulation of High-Pressure Properties of Complex Materials: A Brief Review on the Methods Based on First-Principles[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030102. doi: 10.11858/gywlxb.20190710
Citation: GENG Huayun, SUN Yi, XIANG Shikai. Computation and Simulation of High-Pressure Properties of Complex Materials: A Brief Review on the Methods Based on First-Principles[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030102. doi: 10.11858/gywlxb.20190710

Computation and Simulation of High-Pressure Properties of Complex Materials: A Brief Review on the Methods Based on First-Principles

doi: 10.11858/gywlxb.20190710
  • Received Date: 16 Jan 2019
  • Rev Recd Date: 22 Apr 2019
  • Issue Publish Date: 25 May 2019
  • This work briefly summarizes and reviewes the first-principles quantum mechanics calculations and simulations on the high-pressure properties of complex materials. We emphasized the applications in alloys and intermetallic compounds, materials with defects and strongly correlated electron systems. A series of methods, including cluster expansion method, lattice gas model, and quasi-annealing simulation approach, have been developed by combing quantum mechanics calculations with the statistical mechanics principles. Their pros and cons are discussed. The contents covered in this review are just a small portion of the first-principles methods that are evolving to tackle the complex systems. But they are of representative, and a retrospect of them might be helpful for developing better methods with high efficiency and good predictability for multiple-scale simulations.

     

  • loading
  • [1]
    SCHRÖDINGER E. An undulatory theory of the mechanics of atoms and molecules [J]. Physical Review, 1926, 28(6): 1049–1070. doi: 10.1103/PhysRev.28.1049
    [2]
    HEISENBERG W. Quantum-theoretical re-interpretation of kinematic and mechanical relations [J]. Zeitschrift für Physik, 1925, 33: 879. doi: 10.1007/BF01328377
    [3]
    DIRAC P A M. The quantum theory of the electron [J]. Proceedings of the Royal Society of London, 1928, 117(778): 610. doi: 10.1098/rspa.1928.0023
    [4]
    PAULI W. On the connection of the arrangement of electron groups in atoms with the complex structure of spectra [J]. Zeitschrift für Physik, 1925, 31: 765–765. doi: 10.1007/BF02980631
    [5]
    HARTREE D R. The wave mechanics of an atom with a non-coulomb central field [J]. Mathematical Proceedings of the Cambridge, 1928, 24: 89. doi: 10.1017/S0305004100011919
    [6]
    FOCK F. Nherungs methode zur lsung des quanten mechanischen mehrkrper problems [J]. Zeitschrift für Physik, 1930, 61: 126. doi: 10.1007/BF01340294
    [7]
    NITYANANDA, HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Resonance, 1964, 136: B864.
    [8]
    KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects [J]. Physical Review, 1965, 140: A1133. doi: 10.1103/PhysRev.140.A1133
    [9]
    KOHN W. Nobel lecture: electronic structure of matter-wave functions and density functionals [J]. Reviews of Modern Physics, 1999, 71(5): 1253. doi: 10.1103/RevModPhys.71.1253
    [10]
    PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation [J]. Physical Review B, 1992, 46(11): 6671. doi: 10.1103/PhysRevB.46.6671
    [11]
    SUN J, MARSMAN M, CSONKA G, et al. Self-consistent meta-generalized gradient approximation within the projector-augmented-wave method [J]. Physical Review B, 2011, 84(3): 035117. doi: 10.1103/PhysRevB.84.035117
    [12]
    ZHAO Y, TRUHLAR D G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions [J]. Journal of Chemical Physics, 2006, 125(19): 194101. doi: 10.1063/1.2370993
    [13]
    DION M, RYDBERG H, SCHRODER E, et al. Van der Waals density functional for general geometries [J]. Physical Review Letters, 2004, 92(24): 246401. doi: 10.1103/PhysRevLett.92.246401
    [14]
    PAIER J, HIRSCHL R, MARSMAN M, et al. The Perdew-Burke-Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set [J]. The Journal of Chemical Physics, 2005, 122(23): 234102. doi: 10.1063/1.1926272
    [15]
    LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Physical Review B, 1988, 37(2): 786–789.
    [16]
    BECKE A D. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Physical Review A, 1988, 38: 3098. doi: 10.1103/PhysRevA.38.3098
    [17]
    BECKE A D. Correlation energy of an inhomogeneous electron gas: a coordinate-space model [J]. The Journal of Chemical Physics, 1988, 88(2): 1053–1062. doi: 10.1063/1.454274
    [18]
    LIECHTENSTEIN A I, ANISIMOV V I, ZAANE J. Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators [J]. Physical Review B, 1995, 52(8): R5467. doi: 10.1103/PhysRevB.52.R5467
    [19]
    DUDAREV S L, BOTTON G A, SAVRASOV S Y, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study [J]. Physical Review B, 1998, 57(3): 1505. doi: 10.1103/PhysRevB.57.1505
    [20]
    SHISHKIN M, KRESSE G. Implementation and performance of frequency-dependent GW method within PAW framework [J]. Physical Review B, 2006, 74(3): 035101.
    [21]
    SHISHKIN M, KRESSE G. Self-consistent GW calculations for semiconductors and insulators [J]. Physical Review B, 2007, 75(23): 235102. doi: 10.1103/PhysRevB.75.235102
    [22]
    FUCHS F, FURTHMULLER J, BECHSTEDT F, et al. Quasiparticle band structure based on a generalized Kohn-Sham scheme [J]. Physical Review B, 2007, 76: 115109. doi: 10.1103/PhysRevB.76.115109
    [23]
    HARL J, KRESSE G. Accurate bulk properties from approximate many-body techniques [J]. Physical Review Letters, 2009, 103(5): 056401. doi: 10.1103/PhysRevLett.103.056401
    [24]
    HARL J, SCHIMKA L, KRESSE G. Assessing the quality of the random phase approximation for lattice constants and atomization energies of solids [J]. Physical Review B, 2010, 50(11): 115126.
    [25]
    BOETTGER J C, TRICKEY S B. Equation of state and properties of lithium [J]. Physical Review B, 1985, 32(6): 3391–3398. doi: 10.1103/PhysRevB.32.3391
    [26]
    GENG H Y, SONG H X, LI J F, et al. High-pressure behavior of dense hydrogen up to 3.5 TPa from density functional theory calculations [J]. Journal of Applied Physics, 2012, 111: 063510. doi: 10.1063/1.3694793
    [27]
    ALFE D, PRICE C D, GILLAN M J. Thermodynamics of hexagonal-close-packed iron under Earth’s core conditions [J]. Physical Review B, 2001, 64(4): 045123. doi: 10.1103/PhysRevB.64.045123
    [28]
    KRESS J D, MAZEVET S, COLLINS L A, et al. Density-functional calculation of the Hugoniot of shocked liquid nitrogen [J]. Physical Review B, 2000, 63: 024203. doi: 10.1103/PhysRevB.63.024203
    [29]
    RECOULES V, MAZEVET S. Temperature and density dependence of XANES spectra in warm dense aluminum plasmas [J]. Physical Review B, 2009, 80: 064110. doi: 10.1103/PhysRevB.80.064110
    [30]
    VAKS V G , KATSNELSON M I , KORESHKOV V G, et al. An experimental and theoretical study of martensitic phase transitions in Li and Na under pressure [J]. Journal of Physics Condensed Matter, 1989, 1: 5319–5335. doi: 10.1088/0953-8984/1/32/001
    [31]
    MONSERRAT B, DRUMMOND N D, NEEDS R J. Anharmonic vibrational properties in periodic systems: energy, electron-phonon coupling, and stress [J]. Physical Review B, 2013, 87: 144302. doi: 10.1103/PhysRevB.87.144302
    [32]
    GRABOWSKI B, ISMER L, HICKEL T, et al. Ab initio up to the melting point: anharmonicity and vacancies in aluminum [J]. Physical Review B, 2009, 79(13): 134106. doi: 10.1103/PhysRevB.79.134106
    [33]
    SCHAEFFER A M J, TALMADGE W B, TEMPLE S R, et al. High pressure melting of lithium [J]. Physical Review Letters, 2012, 109: 185702. doi: 10.1103/PhysRevLett.109.185702
    [34]
    LEPESHKINA S V, MAGNITSKAYAC M V, MAKSIMOVA E G. Lattice dynamics and melting features of Li and Na [J]. Jetp Letters, 2009, 89: 586–591. doi: 10.1134/S0021364009110137
    [35]
    MUNEHISA M, QUAN Y, JUNYA O, et al. Multiple quantum phase transitions of plutonium compounds [J]. Life Sciences, 2011, 84(4): 041105.
    [36]
    NICOLA L, YAO Y X, WANG C Z, et al. Phase diagram and electronic structure of praseodymium and plutonium [J]. Physical Review X, 2015, 5(1): 011008. doi: 10.1103/PhysRevX.5.011008
    [37]
    ANDRAULT D, BOLFAN-CASANOVA N, OHTAKA O, et al. Melting diagrams of Fe-rich alloys determined from synchrotron in situ measurements in the 15–23 GPa pressure range [J]. Physics of the Earth and Planetary Interiors, 2009, 174: 181–191. doi: 10.1016/j.pepi.2008.09.020
    [38]
    MOUSAZADEHA M H, FARAMARZIB E, MALEKIA Z. Equation of state for thermodynamic properties of pure and mixtures liquid alkali metals [J]. Thermochimica Acta, 2010, 511: 147–151. doi: 10.1016/j.tca.2010.08.006
    [39]
    OTTO J W, VASSILIOU J K, FROMMEYER G. Equation of state of polycrystalline Ni50Al50 [J]. Journal of Materials Research, 1997, 12(11): 3106. doi: 10.1557/JMR.1997.0405
    [40]
    HIRAO N, OHTANI E, KONDO T, et al. Equation of state of iron-silicon alloys to megabar pressure [J]. Physics & Chemistry of Minerals, 2004, 31(6): 329–336.
    [41]
    GENG H Y, CHEN N X, SLUITER M H F. First-principles equation of state and phase stability for the Ni-Al system under high pressures [J]. Physical Review B, 2004, 70(9): 094203. doi: 10.1103/PhysRevB.70.094203
    [42]
    KIKUCHI R. A theory of cooperative phenomena [J]. Physical Review, 1951, 81: 988. doi: 10.1103/PhysRev.81.988
    [43]
    BARKER J A. Methods of approximation in the theory of regular mixtures [J]. Proceedings of the Royal Society A: Mathematical, 1952, 216: 45.
    [44]
    MORITA T. General structure of distribution function for the Heisenberg model and the Ising model [J]. Journal of Mathematical Physics, 1972, 13(1): 115–123. doi: 10.1063/1.1665840
    [45]
    MORITA T. Cluster variation method and Mobius inversion formula [J]. Journal of Statistical Physics, 1990, 59: 819. doi: 10.1007/BF01025852
    [46]
    SCHLIJPER A G. Exact variational methods and cluster-variation approximations [J]. Journal of Statistical Physics, 1984, 35(3/4): 285–301.
    [47]
    SCHLIJPER A G. Convergence of the cluster-variation method in the thermodynamic limit [J]. Physical Review B, 1983, 27(11): 6841. doi: 10.1103/PhysRevB.27.6841
    [48]
    CACCIAMANI G, CHANG Y A, GRIMVALL G, et al. Thermodynamic modeling of solutions and alloys [J]. Calphad-Computer Coupling of Phase Diagrams & Thermochemistry, 1997, 21(2): 155–170.
    [49]
    HORIUCHI T, UZAWA H, IGARASHI M, et al. Determination of Lennard-Jones type potential for Fe-Pd phase [J]. Calphad, 2002, 26(1): 3–14. doi: 10.1016/S0364-5916(02)00021-4
    [50]
    SANCHEZ J M, DUCASTELLE F, GRATIAS D. Generalized cluster description of multicomponent systems [J]. Physica A, 1984, 128: 334. doi: 10.1016/0378-4371(84)90096-7
    [51]
    CONNOLLY J W D, WILLIAMS A R. Density-functional theory applied to phase transformations in transition-metal alloys [J]. Physical Review B, 1983, 27: 5169. doi: 10.1103/PhysRevB.27.5169
    [52]
    GARBULSKY G D, CEDER G. Linear-programming method for obtaining effective cluster interactions in alloys from total-energy calculations: application to fcc Pd-V system [J]. Physical Review B, 1995, 51: 67. doi: 10.1103/PhysRevB.51.67
    [53]
    GARBULSKY G D, CEDER G. Effect of lattice vibrations on the ordering tendencies in substitutional binary alloys [J]. Physical Review B, 1994, 49: 6327. doi: 10.1103/PhysRevB.49.6327
    [54]
    VAN DE WALLE A, CEDER G, WAGHMARE U V. First-principles computation of the vibrational entropy of ordered and disordered Ni3Al [J]. Physical Review Letters, 1998, 80(22): 4911–4914. doi: 10.1103/PhysRevLett.80.4911
    [55]
    VAN DE WALLE A, CEDER G. The effect of lattice vibrations on substitutional alloy thermodynamics [J]. Reviews of Modern Physics, 2002, 74(1): 11–45. doi: 10.1103/RevModPhys.74.11
    [56]
    GENG H Y, SLUITER M H F, CHEN N X. Cluster expansion of electronic excitations: application to fcc Ni-Al alloys [J]. The Journal of Chemical Physics, 2005, 122: 214706. doi: 10.1063/1.1926276
    [57]
    CEDER G, GARBULSKY G D, TEPESCH P D. Convergent real-space cluster expansion for configurational disorder in ionic systems [J]. Physical Review B, 1995, 51(21): 11257.
    [58]
    TOKAR V I. A new cluster method in lattice statistics [J]. Computational Materials Science, 1997, 8(1/2): 8–15.
    [59]
    NATALIYA P, BENOÎT A, JULIEN T, et al. A convex hull algorithm for a grid minimization of Gibbs energy as initial step in equilibrium calculations in two-phase multicomponent alloys [J]. Computational Materials Science, 2012, 61(11): 54–66.
    [60]
    SLUITER M H F, WATANABE Y, FONTAINE D, et al. First-principles calculation of the pressure dependence of phase equilibria in the Al-Li system [J]. Physical Review B, 1996, 53(11): 6137–6151.
    [61]
    GENG H Y, SLUITER M H F, CHEN N X. Order-disorder effects on the equation of state for fcc Ni-Al alloys [J]. Physical Review B, 2005, 72(1): 014204. doi: 10.1103/PhysRevB.72.014204
    [62]
    SLUITER M, KAWAZOE Y. Explanation for the configurational heat capacity of ordered phases [J]. Physical Review B, 1999, 59(5): 3280. doi: 10.1103/PhysRevB.59.3280
    [63]
    GENG H Y, CHEN N X, SLUITER M H F. Shock induced order-disorder transformation in Ni3Al [J]. Physical Review B, 2005, 71(1): 012105. doi: 10.1103/PhysRevB.71.012105
    [64]
    GENG H Y, SONG H X, WU Q. Theoretical assessment on the possibility of constraining point-defect energetics by pseudo phase transition pressures [J]. Physical Review B, 2013, 87: 174107. doi: 10.1103/PhysRevB.87.174107
    [65]
    GENG H Y, SLUITER M H F, CHEN N X. Hybrid cluster expansions for local structural relaxations [J]. Physical Review B, 2006, 73: 012202. doi: 10.1103/PhysRevB.73.012202
    [66]
    耿华运. 替位合金物态方程的有序-无序效应 [D]. 北京: 清华大学, 2005.
    [67]
    GENG H Y, CHEN Y, KANETA Y. Point defects and clustering in uranium dioxide by LSDA+U calculations [J]. Physical Review B, 2008, 77: 104120. doi: 10.1103/PhysRevB.77.104120
    [68]
    SLUITER M H F. Lattice stability prediction of elemental tetrahedrally close-packed structures [J]. Acta Materialia, 2007, 55(11): 3707–3718. doi: 10.1016/j.actamat.2007.02.016
    [69]
    GENG H Y, SONG HONG X, WU Q. Anomalies in nonstoichiometric uranium dioxide induced by a pseudo phase transition of point defects [J]. Physical Review B, 2012, 85(14): 144111. doi: 10.1103/PhysRevB.85.144111
    [70]
    GENG H Y, SONG H X, JIN K, et al. First-principles study on oxidation effects in uranium oxides and high-pressure high-temperature behavior of point defects in uranium dioxide [J]. Physical Review B, 2011, 84(11): 174115.
    [71]
    GENG H Y, CHEN Y, KANETA Y, et al. Ab initio investigation on oxygen defect clusters in UO2+ x [J]. Applied Physics Letters, 2008, 93: 201903. doi: 10.1063/1.3035846
    [72]
    GENG H Y, CHEN Y, KANETA Y, et al. Stability mechanism of cuboctahedral clusters in UO2+ x: first-principles calculations [J]. Physical Review B, 2008, 77: 180101. doi: 10.1103/PhysRevB.77.180101
    [73]
    KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
    [74]
    GENG H Y, CHEN Y, KANETA Y, et al. Interplay of defect cluster and the stability of xenon in uranium dioxide from density functional calculations [J]. Physical Review B, 2010, 82(9): 094106. doi: 10.1103/PhysRevB.82.094106
    [75]
    ANTOINE C, MARCO K, NICALS L, et al. GGA+U study of uranium mononitride: a comparison of the U-ramping and occupation matrix schemes and incorporation energies of fission products [J]. Journal of Nuclear Materials, 2016, 478(1): 119–124.
    [76]
    MEREDIG B, THOMPSON A, HANSEN H A, et al. Method for location low-energy solutions within DFT+U [J]. Physical Review B, 2010, 82(19): 195128. doi: 10.1103/PhysRevB.82.195128
    [77]
    YI S, QING P, GANG L. Quantum mechanical modeling of hydrogen assisted cracking in aluminum [J]. Physical Review B, 2013, 88(10): 104109. doi: 10.1103/PhysRevB.88.104109
    [78]
    CHEN Z, ZHANG X, LU G. Multiscale computational design of core/shell nanoparticles for oxygen reduction reaction [J]. The Journal of Physical Chemistry C, 2017, 121(3): 1964–1973. doi: 10.1021/acs.jpcc.6b11337
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(9665) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return