Citation: | YU Yin, LI Yuanyuan, HE Hongliang, WANG Wenqiang. Mesoscale Lattice Model for Dynamic Fracture of Brittle Materials[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030106. doi: 10.11858/gywlxb.20190707 |
[1] |
BUEHLER M J, GAO H. Dynamical fracture instabilities due to local hyperelasticity at crack tips [J]. Nature, 2006, 439(7074): 307–310. doi: 10.1038/nature04408
|
[2] |
BUEHLER M J, ABRAHAM F F, GAO H. Hyperelasticity governs dynamic fracture at a critical length scale [J]. Nature, 2003, 426(6963): 141–146. doi: 10.1038/nature02096
|
[3] |
RAVI-CHANDAR K, YANG B. On the role of microcracks in the dynamic fracture of brittle materials [J]. Journal of the Mechanics and Physics of Solids, 1997, 45(4): 535–563. doi: 10.1016/S0022-5096(96)00096-8
|
[4] |
FINEBERG J, GROSS S P, MARDER M, et al. Instability in the propagation of fast cracks [J]. Physical Review B, 1992, 45(10): 5146–5154. doi: 10.1103/PhysRevB.45.5146
|
[5] |
SHARON E, GROSS S P, FINEBERG J. Energy dissipation in dynamic fracture [J]. Physical Review Letters, 1996, 76(12): 2117–2120. doi: 10.1103/PhysRevLett.76.2117
|
[6] |
张庆明, 黄风雷. 超高速碰撞动力学引论 [M]. 北京: 科学出版社, 2000.
|
[7] |
BAKER J R. Hypervelocity crater penetration depth and diameter—a linear function of impact velocity? [J]. International Journal of Impact Engineering, 1995, 17(1/2/3): 25–35.
|
[8] |
CHHABILDAS L C, REINHART W D, THORNHILL T F, et al. Debris generation and propagation phenomenology from hypervelocity impacts on aluminum from 6 to 11 km/s [J]. International Journal of Impact Engineering, 2003, 29(1): 185–202. doi: 10.1016/j.ijimpeng.2003.09.016
|
[9] |
王新荣, 陈永波.有限元法基础及ANSYS应用 [M].北京: 科学出版社, 2008.
|
[10] |
CAMACHO G T, ORTIZ M. Computational modeling of impact damage in brittle materials [J]. International Journal of Solids and Structures, 1996, 33(20/21/22): 2899–2938.
|
[11] |
ESPINOSA H D, ZAVATTIERI P D. A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: theory and numerical implementation [J]. Mechanics of Materials, 2003, 35(3): 333–364.
|
[12] |
ESPINOSA H D, ZAVATTIERI P D. A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part II: numerical examples [J]. Mechanics of Materials, 2003, 35(3): 365–394.
|
[13] |
ZAVATTIERI P D, RAGHURAM P V, ESPINOSA H D. A computational model of ceramic microstructures subjected to multi-axial dynamic loading [J]. Journal of the Mechanics and Physics of Solids, 2001, 49(1): 27–68. doi: 10.1016/S0022-5096(00)00028-4
|
[14] |
BOURNE N K, MILLETT J C F, CHEN M, et al. On the Hugoniot elastic limit in polycrystalline alumina [J]. Journal of Applied Physics, 2007, 102(7): 073514. doi: 10.1063/1.2787154
|
[15] |
马上. 超高速碰撞问题的三维物质点法 [D]. 北京: 清华大学, 2005.
|
[16] |
SULSKY D, CHEN Z, SCHREYER H L. A particle method for history-dependent materials [J]. Computer Methods in Applied Mechanics and Engineering, 1994, 118(1/2): 179–196.
|
[17] |
SULSKY D, ZHOU S J, SCHREYER H L. Application of a particle-in-cell method to solid mechanics [J]. Computer Physics Communications, 1995, 87(1/2): 236–252.
|
[18] |
CHEN Z, HU W, SHEN L, et al. An evaluation of the MPM for simulating dynamic failure with damage diffusion [J]. Engineering Fracture Mechanics, 2002, 69(17): 1873–1890. doi: 10.1016/S0013-7944(02)00066-8
|
[19] |
XU A, PAN X F, ZHANG G, et al. Material-point simulation of cavity collapse under shock [J]. Journal of Physics: Condensed Matter, 2007, 19(32): 326212. doi: 10.1088/0953-8984/19/32/326212
|
[20] |
LI F, PAN J, SINKA C. Modelling brittle impact failure of disc particles using material point method [J]. International Journal of Impact Engineering, 2011, 38(7): 653–660. doi: 10.1016/j.ijimpeng.2011.02.004
|
[21] |
DAPHALAPURKAR N P, LU H, COKER D, et al. Simulation of dynamic crack growth using the generalized interpolation material point (GIMP) method [J]. International Journal of Fracture, 2007, 143(1): 79–102. doi: 10.1007/s10704-007-9051-z
|
[22] |
SULSKY D, SCHREYER L. MPM simulation of dynamic material failure with a decohesion constitutive model [J]. European Journal of Mechanics-A/Solids, 2004, 23(3): 423–445. doi: 10.1016/j.euromechsol.2004.02.007
|
[23] |
SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175–209. doi: 10.1016/S0022-5096(99)00029-0
|
[24] |
HELLAN K. Introduction to fracture mechanics [M]. New York: McGraw-Hill, 1985.
|
[25] |
HA Y D, BOBARU F. Studies of dynamic crack propagation and crack branching with peridynamics [J]. International Journal of Fracture, 2010, 162(1/2): 229–244.
|
[26] |
HA Y D, BOBARU F. Characteristics of dynamic brittle fracture captured with peridynamics [J]. Engineering Fracture Mechanics, 2011, 78(6): 1156–1168. doi: 10.1016/j.engfracmech.2010.11.020
|
[27] |
SILLING S A, EPTON M, WECKNER O, et al. Peridynamic states and constitutive modeling [J]. Journal of Elasticity, 2007, 88(2): 151–184. doi: 10.1007/s10659-007-9125-1
|
[28] |
GHAJARI M, IANNUCCI L, CURTIS P. A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media [J]. Computer Methods in Applied Mechanics and Engineering, 2014, 276: 431–452. doi: 10.1016/j.cma.2014.04.002
|
[29] |
LIU W, HONG J W. A coupling approach of discretized peridynamics with finite element method [J]. Computer Methods in Applied Mechanics and Engineering, 2012, 245: 163–175.
|
[30] |
HRENNIKOFF A. Solution of problems of elasticity by the framework method [J]. Journal of Applied Mechanics, 1941, 8(4): 169.
|
[31] |
ASHURST W T, HOOVER W G. Microscopic fracture studies in the two-dimensional triangular lattice [J]. Physical Review B, 1976, 14(4): 1465. doi: 10.1103/PhysRevB.14.1465
|
[32] |
KEATING P N. Theory of the third-order elastic constants of diamond-like crystals [J]. Physical Review, 1966, 149(2): 674. doi: 10.1103/PhysRev.149.674
|
[33] |
KIRKWOOD J G. The skeletal modes of vibration of long chain molecules [J]. The Journal of Chemical Physics, 1939, 7(7): 506–509. doi: 10.1063/1.1750479
|
[34] |
CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies [J]. Geotechnique, 1979, 29(1): 47–65. doi: 10.1680/geot.1979.29.1.47
|
[35] |
ALAVA M J, NUKALA P K V V, ZAPPERI S. Statistical models of fracture [J]. Advances in Physics, 2006, 55(3/4): 349–476.
|
[36] |
PAZDNIAKOU A, ADLER P M. Lattice spring models [J]. Transport in Porous Media, 2012, 93(2): 243–262. doi: 10.1007/s11242-012-9955-6
|
[37] |
FRENKEL D, SMIT B. FRENKEL D, et al. Understanding molecular simulation: from algorithms to applications [M]. Holand: Academic Press, 2001.
|
[38] |
BEALE P D, SROLOVITZ D J. Elastic fracture in random materials [J]. Physical Review B, 1988, 37(10): 5500. doi: 10.1103/PhysRevB.37.5500
|
[39] |
BUXTON G A, CARE C M, CLEAVER D J. A lattice spring model of heterogeneous materials with plasticity [J]. Modelling and Simulation in Materials Science and Engineering, 2001, 9(6): 485. doi: 10.1088/0965-0393/9/6/302
|
[40] |
SROLOVITZ D J, BEALE P D. Computer simulation of failure in an elastic model with randomly distributed defects [J]. Journal of the American Ceramic Society, 1988, 71(5): 362–369. doi: 10.1111/jace.1988.71.issue-5
|
[41] |
CALDARELLI G, CASTELLANO C, PETRI A. Criticality in models for fracture in disordered media [J]. Physica A: Statistical Mechanics and Its Applications, 1999, 270(1/2): 15–20.
|
[42] |
PARISI A, CALDARELLI G. Physica A: statistical mechanics and its applications [J]. Physica A, 2000, 280(1/2): 161.
|
[43] |
YAN H, LI G, SANDER L M. Fracture growth in 2d elastic networks with Born model [J]. Europhysics Letters, 1989, 10(1): 7. doi: 10.1209/0295-5075/10/1/002
|
[44] |
GRAH M, ALZEBDEH K, SHENG P Y, et al. Brittle intergranular failure in 2D microstructures: experiments and computer simulations [J]. Acta Materialia, 1996, 44(10): 4003–4018. doi: 10.1016/S1359-6454(96)00044-4
|
[45] |
LILLIU G, VAN MIER J G M. 3D lattice type fracture model for concrete [J]. Engineering Fracture Mechanics, 2003, 70(7/8): 927–941.
|
[46] |
ZHAO G F, FANG J, ZHAO J. A 3D distinct lattice spring model for elasticity and dynamic failure [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(8): 859–885. doi: 10.1002/nag.v35.8
|
[47] |
YU Y, WANG W, HE H, et al. Modeling multiscale evolution of numerous voids in shocked brittle material [J]. Physical Review E, 2014, 89(4): 043309. doi: 10.1103/PhysRevE.89.043309
|
[48] |
CASE S, HORIE Y. Discrete element simulation of shock wave propagation in polycrystalline copper [J]. Journal of the Mechanics and Physics of Solids, 2007, 55(3): 589–614. doi: 10.1016/j.jmps.2006.08.003
|
[49] |
YANO K, HORIE Y. Discrete-element modeling of shock compression of polycrystalline copper [J]. Physical Review B, 1999, 59(21): 13672. doi: 10.1103/PhysRevB.59.13672
|
[50] |
WANG Y C, YIN X C, KE F, et al. Numerical simulation of rock failure and earthquake process on mesoscopic scale [J]. Pure and Applied Geophysics, 2000, 157(11/12): 1905–1928.
|
[51] |
OSTOJA-STARZEWSKI M. Lattice models in micromechanics [J]. Applied Mechanics Reviews, 2002, 55(1): 35–60. doi: 10.1115/1.1432990
|
[52] |
GUSEV A A. Finite element mapping for spring network representations of the mechanics of solids [J]. Physical Review Letters, 2004, 93(3): 034302. doi: 10.1103/PhysRevLett.93.034302
|
[53] |
GRIFFITH A A. VI The phenomena of rupture and flow in solids [J]. Philosophical Transactions of the Royal Society of London Series A, 1921, 221(582): 163–198.
|
[54] |
YU Y, WANG W, HE H, et al. Mesoscopic deformation features of shocked porous ceramic: polycrystalline modeling and experimental observations [J]. Journal of Applied Physics, 2015, 117(12): 125901. doi: 10.1063/1.4916244
|
[55] |
ZHANG Z, DING J, GHASSEMI A, et al. A hyperelastic-bilinear potential for lattice model with fracture energy conservation [J]. Engineering Fracture Mechanics, 2015, 142: 220–235. doi: 10.1016/j.engfracmech.2015.06.006
|
[56] |
ZAPPERI S, VESPIGNANI A, STANLEY H E. Plasticity and avalanche behaviour in microfracturing phenomena [J]. Nature, 1997, 388(6643): 658. doi: 10.1038/41737
|
[57] |
KALE S, OSTOJA-STARZEWSKI M. Elastic-plastic-brittle transitions and avalanches in disordered media [J]. Physical Review Letters, 2014, 112(4): 045503. doi: 10.1103/PhysRevLett.112.045503
|
[58] |
KALE S, OSTOJA-STARZEWSKI M. Morphological study of elastic-plastic-brittle transitions in disordered media [J]. Physical Review E, 2014, 90(4): 042405. doi: 10.1103/PhysRevE.90.042405
|
[59] |
OSTOJA-STARZEWSKI M, WANG G. Particle modeling of random crack patterns in epoxy plates [J]. Probabilistic Engineering Mechanics, 2006, 21(3): 267–275. doi: 10.1016/j.probengmech.2005.10.007
|
[60] |
MASTILOVIC S, KRAJCINOVIC D. High-velocity expansion of a cavity within a brittle material [J]. Journal of the Mechanics and Physics of Solids, 1999, 47(3): 577–610. doi: 10.1016/S0022-5096(98)00040-4
|
[61] |
WILNER B. Stress analysis of particles in metals [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(2): 141–165. doi: 10.1016/S0022-5096(98)90002-3
|
[62] |
WANG Y, ALONSO-MARROQUIN F. A finite deformation method for discrete modeling: particle rotation and parameter calibration [J]. Granular Matter, 2009, 11(5): 331–343. doi: 10.1007/s10035-009-0146-2
|
[63] |
WANG Y, MORA P. Modeling wing crack extension: implications for the ingredients of discrete element model [M]// Earthquakes: Simulations, Sources and Tsunamis. Birkhäuser Basel, 2008: 609-620.
|
[64] |
WANG Z L, KONIETZKY H, SHEN R F. Coupled finite element and discrete element method for underground blast in faulted rock masses [J]. Soil Dynamics and Earthquake Engineering, 2009, 29(6): 939–945. doi: 10.1016/j.soildyn.2008.11.002
|
[65] |
DING J, ZHANG Z, GE X. Lattice structure: scaling of strain related energy density [J]. Theoretical and Applied Fracture Mechanics, 2015, 79: 84–90. doi: 10.1016/j.tafmec.2015.05.009
|
[66] |
LIU X, MARTIN C L, DELETTE G, et al. Elasticity and strength of partially sintered ceramics [J]. Journal of the Mechanics and Physics of Solids, 2010, 58(6): 829–842. doi: 10.1016/j.jmps.2010.04.007
|
[67] |
LIU X, MARTIN C L, BOUVARD D, et al. Strength of highly porous ceramic electrodes [J]. Journal of the American Ceramic Society, 2011, 94(10): 3500–3508. doi: 10.1111/j.1551-2916.2011.04669.x
|
[68] |
LIU X, MARTIN C L, DELETTE G, et al. Microstructure of porous composite electrodes generated by the discrete element method [J]. Journal of Power Sources, 2011, 196(4): 2046–2054. doi: 10.1016/j.jpowsour.2010.09.033
|
[69] |
吕文银. 陶瓷材料压缩破坏的数值模拟 [D]. 宁波: 宁波大学, 2017.
|
[70] |
吴建奎. 冲击加载下裂纹高速扩展的数值模拟研究 [D]. 沈阳: 东北大学, 2016.
|
[71] |
WANG W, CHEN S. Hyperelasticity, viscoelasticity, and nonlocal elasticity govern dynamic fracture in rubber [J]. Physical Review Letters, 2005, 95(14): 144301. doi: 10.1103/PhysRevLett.95.144301
|
[72] |
傅华. 材料在冲击荷载下细观变形特征的数值模拟初步研究 [D]. 绵阳: 中国工程物理研究院, 2006.
|
[73] |
王文强, 于继东, 尚海林. 撞击条件下炸药热点形成和燃烧的数值模拟研究[R]. 绵阳: 中国工程物理研究院流体物理研究所, 2012.
|
[74] |
YU Y, WANG W, CHEN K, et al. Controllable fracture in shocked ceramics: shielding one region from severely fractured state with the sacrifice of another region [J]. International Journal of Solids and Structures, 2018, 135: 137–147. doi: 10.1016/j.ijsolstr.2017.11.016
|