Citation: | SUN Lei, LUO Kun, LIU Bing, HAN Qiaoyi, WANG Xiaoyu, LIANG Zitai, ZHAO Zhisheng. First-Principles Investigations on Metallic Silicon Allotropes[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 020103. doi: 10.11858/gywlxb.20190705 |
[1] |
KILBY J S. Miniaturized electronic circuits [J]. Google Patents, 1964.
|
[2] |
NOYCE R N. Semiconductor device-and-lead structure: US 2981877 [P]. 1961–04–25.
|
[3] |
CARLSON D E, WRONSKI C R. Amorphous silicon solar cell [J]. Applied Physics Letters, 1976, 28(11): 671–673. doi: 10.1063/1.88617
|
[4] |
GREEN M A. Solar cells: operating principles, technology, and system applications [J]. Prentice-Hall, 1982.
|
[5] |
GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (Version 45) [J]. Progress in Photovoltaics: Research and Applications, 2015, 23(1): 1–9. doi: 10.1002/pip.v23.1
|
[6] |
MUJICA A, RUBIO A, MUNOZ A, et al. High-pressure phases of group-IV, III-V, and H-VI compounds [J]. Reviews of Modern Physics, 2003, 75(3): 863–912. doi: 10.1103/RevModPhys.75.863
|
[7] |
BAUTISTA-HERNANDEZ A, RANGEL T, ROMERO A H, et al. Structural and vibrational stability of M and Z phases of silicon and germanium from first principles [J]. Journal of Applied Physics, 2013, 113(19): 193504. doi: 10.1063/1.4804668
|
[8] |
FUJIMOTO Y, KORETSUNE T, SAITO S, et al. A new crystalline phase of four-fold coordinated silicon and germanium [J]. New Journal of Physics, 2008, 10(8): 083001.
|
[9] |
WU F, JUN D, KAN E, et al. Density functional predictions of new silicon allotropes: electronic properties and potential applications to Li-battery anode materials [J]. Solid State Communications, 2011, 151(18): 1228–1230. doi: 10.1016/j.ssc.2011.06.001
|
[10] |
ZHAO Z, TIAN F, DONG X, et al. Tetragonal allotrope of group 14 elements [J]. Journal of the American Chemical Society, 2012, 134(30): 12362–12365. doi: 10.1021/ja304380p
|
[11] |
MALONE B D, SAU J D, COHEN M L. Ab initio survey of the electronic structure of tetrahedrally bonded phases of silicon [J]. Physical Review B, 2008, 78(3): 35210. doi: 10.1103/PhysRevB.78.035210
|
[12] |
FAN Q, CHAI C, WEI Q, et al. Novel silicon allotropes: stability, mechanical, and electronic properties [J]. Journal of Applied Physics, 2015, 118(18): 185704. doi: 10.1063/1.4935549
|
[13] |
LUO K, ZHAO Z, MA M, et al. Si10: a sp3 silicon allotrope with spirally connected Si5 tetrahedrons [J]. Chemistry of Materials, 2016, 28(18): 6441–6445. doi: 10.1021/acs.chemmater.6b02484
|
[14] |
XIANG H J, HUANG B, KAN E, et al. Towards direct-gap silicon phases by the inverse band structure design approach [J]. Physical Review Letters, 2013, 110(11): 13–16.
|
[15] |
WANG Q, XU B, SUN J, et al. Direct band gap silicon allotropes [J]. Journal of the American Chemical Society, 2014, 136(28): 9826–9829. doi: 10.1021/ja5035792
|
[16] |
WANG Q, LUO K, MA M, et al. A new metastable metallic silicon allotrope [J]. Chinese Science Bulletin (Chinese Version), 2015, 60(27): 2616. doi: 10.1360/N972015-00200
|
[17] |
WEN Z, LU G, MAO S, et al. Silicon nanotube anode for lithium-ion batteries [J]. Electrochemistry Communications, 2013, 29: 67–70. doi: 10.1016/j.elecom.2013.01.015
|
[18] |
SUNG H J, HANG W H, LEE I H, et al. Superconducting open-framework allotrope of silicon at ambient pressure [J]. Physical Review Letters, 2018, 120(15): 157001. doi: 10.1103/PhysRevLett.120.157001
|
[19] |
BAI J, ZENG X C, TANAKA H, et al. Metallic single-walled silicon nanotubes [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(9): 2664–2668. doi: 10.1073/pnas.0308467101
|
[20] |
HEVER A, BERNSTEIN J, HOD O. Structural stability and electronic properties of sp3 type silicon nanotubes [J]. The Journal of chemical physics, 2012, 137(21): 214702. doi: 10.1063/1.4767389
|
[21] |
LIN C, POVINELLI M L. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications [J]. Optics Express, 2009, 17(22): 19371–19381. doi: 10.1364/OE.17.019371
|
[22] |
CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP [J]. Zeitschrift für Kristallographie–Crystalline Materials, 2005, 220(5/6): 567–570.
|
[23] |
WANG Y, LV J, ZHU L, et al. CALYPSO: A method for crystal structure prediction [J]. Computer Physics Communications, 2012, 183(10): 2063–2070. doi: 10.1016/j.cpc.2012.05.008
|
[24] |
WANG Y, LV J, ZHU L, et al. Crystal structure prediction via particle-swarm optimization [J]. Physical Review B, 2010, 82(9): 094116.
|
[25] |
LAASONEN K, CAR R, LEE C, et al. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics [J]. Physical Review B, 1991, 43(8): 6796–6799. doi: 10.1103/PhysRevB.43.6796
|
[26] |
VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physical Review B, 1990, 41(11): 7892–7895. doi: 10.1103/PhysRevB.41.7892
|
[27] |
PERDEW J P, ZUNGER A. Self-interaction correction to density-functional approximations for many-electron systems [J]. Physical Review B, 1981, 23(10): 5048–5079. doi: 10.1103/PhysRevB.23.5048
|
[28] |
PURVEE B, SADHNA S. Pressure induced structural phase transitions–a review [J]. Central European Journal of Chemistry, 2012, 10(5): 1391–1422.
|
[29] |
CEPERLEY D M, ALDER B J. Ground state of the electron gas by a stochastic method [J]. Physical Review Letters, 1980, 45(7): 566–569. doi: 10.1103/PhysRevLett.45.566
|
[30] |
MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188. doi: 10.1103/PhysRevB.13.5188
|
[31] |
KRESSE G, FURTHMÜLLER J, HAFNER J. Ab initio force constant approach to phonon dispersion relations of diamond and graphite [J]. Europhysics Letters, 1995, 32(9): 729. doi: 10.1209/0295-5075/32/9/005
|
[32] |
TSE J S, KLUG D D, PATCHKOVSKII S, et al. Chemical bonding, electron-phonon coupling, and structural transformations in high-pressure phases of Si [J]. The Journal of Physical Chemistry B, 2006, 110(8): 3721–3726. doi: 10.1021/jp0554341
|