Citation: | FENG Genzhu, YU Boli, LI Shiqiang, LIU Zhifang. Deformation and Energy Absorption of Multi-Hierarchical Sandwich Structures[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055902. doi: 10.11858/gywlxb.20180707 |
[1] |
LAKES R. Materials with structural hierarchy [J]. Nature, 1993, 361(6412): 511–515. doi: 10.1038/361511a0
|
[2] |
ZHANG J, SUPERNAK P, MUELLER-ALANDER S, et al. Improving the bending strength and energy absorption of corrugated sandwich composite structure [J]. Materials & Design, 2013, 52(24): 767–773.
|
[3] |
HE W, LIU J, TAO B, et al. Experimental and numerical research on the low velocity impact behavior of hybrid corrugated core sandwich structures [J]. Composite Structures, 2016, 158: 30–43. doi: 10.1016/j.compstruct.2016.09.009
|
[4] |
HOU S, SHU C, ZHAO S, et al. Experimental and numerical studies on multi-layered corrugated sandwich panels under crushing loading [J]. Composite Structures, 2015, 126: 371–385. doi: 10.1016/j.compstruct.2015.02.039
|
[5] |
MEZA L R, ZELHOFER A J, CLARKE N, et al. Resilient 3D hierarchical architected metamaterials [J]. Proceedings of the National Academy of Sciences, 2015, 112(37): 11502–11507. doi: 10.1073/pnas.1509120112
|
[6] |
KOOISTRA G, DESHPANDE V, WADLEY H. Hierarchical corrugated core sandwich panel concepts [J]. Journal of Applied Mechanics, 2007, 74(2): 259–268. doi: 10.1115/1.2198243
|
[7] |
VELEA M N, SCHNEIDER C, LACHE S. Second order hierarchical sandwich structure made of self-reinforced polymers by means of a continuous folding process [J]. Materials & Design, 2016, 102: 313–320.
|
[8] |
WU Q, GAO Y, WEI X, et al. Mechanical properties and failure mechanisms of sandwich panels with ultra-lightweight three-dimensional hierarchical lattice cores [J]. International Journal of Solids and Structures, 2017, s132/s133: 171–187.
|
[9] |
WU Q, ASHKAN V, MOHAMAD E A, et al. Lattice materials with pyramidal hierarchy: systematic analysis and three dimensional failure mechanism maps [J]. Journal of the Mechanics and Physics of Solids, 2019, 125: 112–114. doi: 10.1016/j.jmps.2018.12.006
|
[10] |
LIU H, CHEN L, DU B, et al. Flatwise compression property of hierarchical thermoplastic composite square lattice [J]. Composite Structures, 2019, 210: 118–133. doi: 10.1016/j.compstruct.2018.11.047
|
[11] |
王志华, 朱峰, 赵隆茂. 多孔金属夹芯结构动力学行为及其应用 [M]. 北京: 兵器工业出版社, 2010: 1–27.
WANG Z H, ZHU F, ZHAO L M. Dynamic behavior and application of sandwich structures with cellular metal cores [M]. Beijing: The Publishing House of Ordnance Industry, 2010: 1–27.
|
[12] |
JING L, WANG Z, ZHAO L. The dynamic response of sandwich panels with cellular metal cores to localized impulsive loading [J]. Composites Part B, 2016, 94: 52–63. doi: 10.1016/j.compositesb.2016.03.035
|
[13] |
CHEN Y, JIA Z, WANG L. Hierarchical honeycomb lattice metamaterials with improved thermal resistance and mechanical properties [J]. Composite Structures, 2016, 152: 395–402. doi: 10.1016/j.compstruct.2016.05.048
|
[14] |
CHEN Y, LI T, JIA Z, et al. 3D printed hierarchical honeycombs with shape integrity under large compressive deformations [J]. Materials & Design, 2018, 137: 226–234.
|
[15] |
YIN H, HUANG X, SCARPA F, et al. In-plane crashworthiness of bio-inspired hierarchical honeycombs [J]. Composite Structures, 2018, 192: 516–527. doi: 10.1016/j.compstruct.2018.03.050
|
[16] |
QIAO J, CHEN C. In-plane crushing of a hierarchical honeycomb [J]. International Journal of Solids & Structures, 2012, 85/86: 57–66.
|
[17] |
方耀楚. 二级层级褶皱结构力学性能研究与优化设计 [D]. 大连: 大连理工大学, 2014: 25–47.
FANG Y C. Mechanical properties and optimal design of hierarchical corrugated structure with the second order [D]. Dalian: Dalian University of Technology, 2014: 25–47.
|
[18] |
田泽, 韩阳, 尹晓文, 等. 截面几何参数对帽型梁轴向冲击响应的影响 [J]. 高压物理学报, 2018, 32(5): 94–101. doi: 10.11858/gywlxb.20180521
TIAN Z, HAN Y, YIN X W, et al. Effect of sectional geometrical parameters on axial impact responses of hat-section beam [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 94–101. doi: 10.11858/gywlxb.20180521
|
[19] |
SANTOSA S P, WIERZBICKI T. Experimental and numerical studies of foam-filled sections [J]. International Journal of Impact Engineering, 2000, 24(5): 509–534. doi: 10.1016/S0734-743X(99)00036-6
|
[20] |
宋宏伟, 范子杰, 虞钢. 几类典型耐撞性结构吸能性能的比较[C]//2004汽车安全技术国际研讨会暨汽车安全技术学术年会, 2004.
|