Citation: | LIAO Binbin, ZHOU Jianwu, LIN Yuan, JIA Liyong, WANG Dongliang, HUA Zhengli, ZHENG Jinyang, GU Chaohua. Low-Velocity Impact Behavior and Damage Characteristics of CFRP Laminates[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044202. doi: 10.11858/gywlxb.20180699 |
[1] |
LIU P F, LIAO B B, JIA L Y, et al. Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact [J]. Composite Structures, 2016, 149: 408–422. doi: 10.1016/j.compstruct.2016.04.012
|
[2] |
LIAO B B, LIU P F. Finite element analysis of dynamic progressive failure properties of GLARE hybrid laminates under low-velocity impact [J]. Journal of Composite Materials, 2018, 52(10): 1317–1330. doi: 10.1177/0021998317724216
|
[3] |
SCHOEPPNER G A, ABRATE S. Delamination threshold loads for low velocity impact on composite laminates [J]. Composites Part A: Applied Science and Manufacturing, 2000, 31(9): 903–915. doi: 10.1016/S1359-835X(00)00061-0
|
[4] |
YANG B, WANG Z, ZHOU L, et al. Experimental and numerical investigation of interply hybrid composites based on woven fabrics and PCBT resin subjected to low-velocity impact [J]. Composite Structures, 2015, 132: 464–476. doi: 10.1016/j.compstruct.2015.05.069
|
[5] |
WAN Y, DIAO C, YANG B, et al. GF/epoxy laminates embedded with wire nets: a way to improve the low-velocity impact resistance and energy absorption ability [J]. Composite Structures, 2018, 202: 818–835. doi: 10.1016/j.compstruct.2018.04.041
|
[6] |
钭李昕, 王秋成, 陈光耀. 碳纤维复合材料低速冲击特性及损伤分析研究 [J]. 机电工程, 2016, 33(7): 815–821.
TOU L X, WANG Q C, CHEN G Y. Analysis on low velocity impact performance and damage behavior of carbon fiber composite beam [J]. Journal of Mechanical & Electrical Engineering, 2016, 33(7): 815–821.
|
[7] |
竺铝涛, 张发. 碳纤维复合材料层压板低速冲击试验研究 [J]. 航空发动机, 2015, 41(1): 85–88.
ZHU L T, ZHANG F. Experimental investigation of low-speed impact for carbon fiber composite laminate [J]. Aeroengine, 2015, 41(1): 85–88.
|
[8] |
TAN W, FALZON B G, CHIU L N S, et al. Predicting low velocity impact damage and compression-after-impact (CAI) behaviour of composite laminates [J]. Composites Part A: Applied Science and Manufacturing, 2015, 71: 212–226. doi: 10.1016/j.compositesa.2015.01.025
|
[9] |
DUBARY N, BOUVET C, RIVALLANT S, et al. Damage tolerance of an impacted composite laminate [J]. Composite Structures, 2018, 206: 261–271. doi: 10.1016/j.compstruct.2018.08.045
|
[10] |
姚振华, 李亚智, 刘向东, 等. 复合材料层合板低速冲击后剩余压缩强度研究 [J]. 西北工业大学学报, 2012, 30(4): 518–523. doi: 10.3969/j.issn.1000-2758.2012.04.008
YAO Z H, LI Y Z, LIU X D, et al. Effectively calculating residual compressive strength of composite laminate after impact(CAI) [J]. Journal of Northwestern Polytechnical University, 2012, 30(4): 518–523. doi: 10.3969/j.issn.1000-2758.2012.04.008
|
[11] |
MITREVSKI T, MARSHALL I H, THOMSON R, et al. The effect of impactor shape on the impact response of composite laminates [J]. Composite Structures, 2005, 67(2): 139–148. doi: 10.1016/j.compstruct.2004.09.007
|
[12] |
AMARO A M, REIS P N B, MAGALHÃES A G, et al. The effect of the impactor diameter and boundary conditions on low velocity impact composites behavior [J]. Applied Mechanics and Materials, 2007, 7/8: 217–222. doi: 10.4028/www.scientific.net/AMM.7-8
|
[13] |
ICTEN B M, KIRAL B G, DENIZ M E. Impactor diameter effect on low velocity impact response of woven glass epoxy composite plates [J]. Composites Part B: Engineering, 2013, 50: 325–332. doi: 10.1016/j.compositesb.2013.02.024
|
[14] |
ANSARI M M, CHAKRABARTI A. Effect of boundary condition and impactor nose angle on impact behaviour of FRP composite: experimental and FE analyses [J]. Materials Today: Proceedings, 2017, 4(9): 9645–9649. doi: 10.1016/j.matpr.2017.06.241
|
[15] |
XIE W B, ZHANG W, KUANG N H, et al. Experimental investigation of normal and oblique impacts on CFRPs by high velocity steel sphere [J]. Composites Part B: Engineering, 2016, 99: 483–493. doi: 10.1016/j.compositesb.2016.06.020
|
[16] |
SEBAEY T A, GONZÁLEZ E V, LOPES C S, et al. Damage resistance and damage tolerance of dispersed CFRP laminates: effect of ply clustering [J]. Composite Structures, 2013, 106: 96–103. doi: 10.1016/j.compstruct.2013.05.052
|
[17] |
WANG H R, LONG S C, ZHANG X Q, et al. Study on the delamination behavior of thick composite laminates under low-energy impact [J]. Composite Structures, 2018, 184: 461–473. doi: 10.1016/j.compstruct.2017.09.083
|
[18] |
SHI Y, SWAIT T, SOUTIS C. Modelling damage evolution in composite laminates subjected to low velocity impact [J]. Composite Structures, 2012, 94(9): 2902–2913. doi: 10.1016/j.compstruct.2012.03.039
|
[19] |
XU Z, YANG F, GUAN Z W, et al. An experimental and numerical study on scaling effects in the low velocity impact response of CFRP laminates [J]. Composite Structures, 2016, 154: 69–78. doi: 10.1016/j.compstruct.2016.07.029
|
[20] |
ASTM International. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136/D7136M-15 [S]. West Conshohocken, PA: ASTM International, 2015.
|