Processing math: 100%
WANG Yichuan. Raman Scattering of Grossular-Andradite Solid Solution[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 040101. doi: 10.11858/gywlxb.20200512
Citation: LUO Shuai, DONG Andi, LIU Shucheng, JI Hongwu, GAO Jing, MAO Weijie, HAO Jiming, DENG Chujin. Longitudinal Adsorption of High Pressure Carbon Dioxide in Shrimp Surimi[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 025301. doi: 10.11858/gywlxb.20180690

Longitudinal Adsorption of High Pressure Carbon Dioxide in Shrimp Surimi

doi: 10.11858/gywlxb.20180690
  • Received Date: 15 Nov 2018
  • Rev Recd Date: 05 Jan 2019
  • High pressure carbon dioxide (HPCD) is a non-thermal food processing technology, which is applied to inactivate microorganisms and enzymes in food. In recent years, it has been found that HPCD can induce proteins to form gels, and the adsorption mass of HPCD has an important effect on the gel properties of proteins. In order to study the adsorption behavior of HPCD in protein, the longitudinal adsorption mass of HPCD in shrimp sruimi was measured and the influences of pressure and temperature on longitudinal adsorption mass were investigated. These results show the adsorption mass measured directly by the instrument is the longitudinal excess adsorption mass of CO2 in shrimp minced meat, which can not accurately reflect the longitudinal absolute adsorption mass. The excess adsorption mass should be corrected according to the absolute adsorption mass by the saturated adsorption phase volume when the adsorption is not saturated. Differently, the excess adsorption mass should be corrected according to the absolute adsorption mass by adsorption phase density when the adsorption is saturated. The adsorption mass of CO2 in shrimp surimi can be more accurately reflected by the absolute adsorption mass. Under isothermal conditions, with the pressure increasing, the longitudinal absolute specific adsorption of CO2 in shrimp surimi increases sharply, reaches a peak value, then decreases gradually, and then tends to be flat. Under isobaric conditions, with the increase of temperature, the longitudinal absolute specific adsorption of CO2 in shrimp surimi decreases. The maximum longitudinal absolute specific adsorption of CO2 in shrimp surimi is 45.53–111.49 cm3/g at 35–60 ℃. The results provide the basic data for the establishment of longitudinal adsorption model of HPCD in shrimp surimi and the technological reference for controlling the qualities of shrimp surimi gel.

     

  • [1]
    FRASER D. Bursting bacteria by release of gas pressure [J]. Nature, 1951, 167: 33–34.
    [2]
    HU W F, ZHOU L Y, XU Z Z, et al. Enzyme inactivation in food processing using high pressure carbon dioxide technology [J]. Critical Reviews of Food Science and Nutrition, 2013, 53(2): 145–161. doi: 10.1080/10408398.2010.526258
    [3]
    ZHOU L Y, BI X F, XU Z H, et al. Effects of high-pressure CO2 processing on flavor, texture, and color of foods [J]. Critical Reviews of Food Science and Nutrition, 2015, 55(6): 750–768. doi: 10.1080/10408398.2012.677871
    [4]
    刘书成, 郭明慧, 刘媛, 等. 高密度CO2杀菌和钝酶及其在食品加工中应用的研究进展 [J]. 广东海洋大学学报, 2016, 36(4): 101–116 doi: 10.3969/j.issn.1673-9159.2016.04.017

    LIU S C, GUO M H, LIU Y, et al. Review on inactivation of microorganisms and enzyme by dense phase carbon dioxide and the application [J]. Journal of Guangdong Ocean University, 2016, 36(4): 101–116 doi: 10.3969/j.issn.1673-9159.2016.04.017
    [5]
    FERRENTINO G, SPILIMBERGO S. High pressure carbon dioxide pasteurization of solid foods: current knowledge and future outlooks [J]. Trends in Food Science and Technology, 2011, 22(8): 427–441. doi: 10.1016/j.jpgs.2011.04.009
    [6]
    BALABAN M O, DUONG T. Dense phase carbon dioxide research: current focus and directions [J]. Agriculture and Agricultural Science Procedia, 2014, 2: 2–9. doi: 10.1016/j.aaspro.2014.11.002
    [7]
    陈亚励, 屈小娟, 郭明慧, 等. 高密度CO2在肉制品和水产品加工中的应用 [J]. 现代食品科技, 2014, 30(9): 304–311

    CHEN Y L, QU X J, GUO M H, et al. Application of dense-phase carbon dioxide in the processing of meat and aquatic products [J]. Modern Food Science and Technology, 2014, 30(9): 304–311
    [8]
    RAO W L, LI X, WANG Z Y, et al. Dense phase carbon dioxide combined with mild heating induced myosin denaturation, texture improvement and gel properties of sausage [J]. Journal of Food Process Engineering, 2017, 40(2): e12404. doi: 10.1111/jfpe.2017.40.issue-2
    [9]
    FERNANDES-SILVA S, MOREIRA-SILVA J, SILVA T H, et al. Porous hydrogels from shark skin collagen crosslinked under dense carbon dioxide atmosphere [J]. Macromolecular Bioscience, 2013, 13(11): 1621–1631. doi: 10.1002/mabi.201300228
    [10]
    FLOREN M L, SPILIMBERGO S, MOTTA A, et al. Carbon dioxide induced silk protein gelation for biomedical applications [J]. Biomacromolecules, 2012, 13(7): 2060–2072. doi: 10.1021/bm300450a
    [11]
    曲亚琳, 张德权, 饶伟丽, 等. 高密度CO2对羊肉糜凝胶特性的影响 [J]. 核农学报, 2010, 24(6): 1226–1231

    QU Y L, ZHANG D Q, RAO W L, et al. Influence of dense phase CO2 on gel properties of minced mutton [J]. Journal of Nuclear Agricultural Sciences, 2010, 24(6): 1226–1231
    [12]
    屈小娟, 刘书成, 吉宏武, 等. 高密度CO2诱导制备虾糜凝胶的特性 [J]. 农业工程学报, 2012, 28(20): 282–287

    QU X J, LIU S C, JI H W, et al. Gel properties of shrimp surimi induced by dense phase carbon dioxide [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(20): 282–287
    [13]
    刘书成, 郭明慧, 邓倩琳, 等. 高密度CO2处理虾肌球蛋白形成凝胶的临界浓度与凝胶强度 [J]. 农业工程学报, 2017, 33(7): 295–301

    LIU S C, GUO M H, DENG Q L, et al. Least gelation concentration and gel strength of myosin from Litopenaeus vannamei induced by dense phase carbon dioxide [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(7): 295–301
    [14]
    LIU S C, LIU Y, LUO S, et al. Molecular dynamics simulation of the interaction between dense-phase carbon dioxide and the myosin heavy chain [J]. Journal of CO2 Utilization, 2017, 21: 270–279. doi: 10.1016/j.jcou.2017.07.025
    [15]
    CHAIX E, GUILLAUME C, GUILLARD V. Oxygen and carbon dioxide solubility and diffusivity in solid food matrices: a review of past and current knowledge [J]. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(3): 261–286. doi: 10.1111/crf3.2014.13.issue-3
    [16]
    CHAIX E, GUILLAUME C, GONTARD N, et al. Diffusivity and solubility of CO2 in dense solid food products [J]. Journal of Food Engineering, 2015, 166: 1–9. doi: 10.1016/j.jfoodeng.2015.05.023
    [17]
    任广跃, 张伟, 张乐道, 等. 多孔介质常压冷冻干燥质热耦合传递数值模拟 [J]. 农业机械学报, 2016, 47(3): 214–220

    REN G Y, ZHANG W, ZHANG L D, et al. Numerical simulation of mass and heat transfer of porous media during atmospheric freeze drying [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 214–220
    [18]
    CHANDRASEKARAN S, RAMANATHAN S, BASAK T. Microwave food processing—a review [J]. Food Research International, 2013, 52(1): 243–261. doi: 10.1016/j.foodres.2013.02.033
    [19]
    National Institute of Standards and Technology (NIST) [DB/OL]. [2018–11–15]. https://webbook.nist.gov/chemistry/fluid/
    [20]
    周尚文, 王红岩, 薛华庆, 等. 页岩过剩吸附质量与绝对吸附质量的差异及页岩气储量计算新方法 [J]. 天然气工业, 2016, 36(1): 12–20

    ZHOU S W, WANG H Y, XUE H Q, et al. Difference between excess and absolute adsorption capacity of shale and a new shale gas reserve calculation method [J]. Natural Gas Industry, 2016, 36(1): 12–20
    [21]
    PINI R, OTTIGER S, BURLINI L, et al. Sorption of carbon dioxide, methane and nitrogen in dry coals at high pressure and moderate temperature [J]. International Journal of Greenhouse Gas Control, 2010, 4(1): 90–101. doi: 10.1016/j.ijggc.2009.10.019
    [22]
    TANG X, RIPEPI N. High pressure supercritical carbon dioxide adsorption in coal: adsorption model and thermodynamic characteristics [J]. Journal of CO2 Utilization, 2017, 18: 189–197. doi: 10.1016/j.jcou.2017.01.011
    [23]
    李全中, 倪小明, 王延斌, 等. 超临界状态下煤岩吸附/解吸二氧化碳的实验 [J]. 煤田地质与勘探, 2014, 42(3): 36–39 doi: 10.3969/j.issn.1001-1986.2014.03.008

    LI Q Z, NI X M, WANG Y B, et al. The experimental study on the adsorption/desorption of carbon dioxide in the coal under supercritical condition [J]. Coal Geology & Exploration, 2014, 42(3): 36–39 doi: 10.3969/j.issn.1001-1986.2014.03.008
    [24]
    刘圣鑫, 钟建华, 马寅生, 等. 页岩中气体的超临界等温吸附研究 [J]. 煤田地质与勘探, 2015, 43(3): 45–50 doi: 10.3969/j.issn.1001-1986.2015.03.009

    LIU S X, ZHONG J H, MA Y S, et al. Super-critical isothermal adsorption of gas in shale [J]. Coal Geology & Exploration, 2015, 43(3): 45–50 doi: 10.3969/j.issn.1001-1986.2015.03.009
    [25]
    GENSTERBLUM Y, HEMERT P V, BILLEMONT P, et al. European inter-laboratory comparison of high pressure CO2 sorption isotherms II: natural coals [J]. International Journal of Coal Geology, 2010, 84(2): 115–124. doi: 10.1016/j.coal.2010.08.013
    [26]
    张帆, 刘香禺, 李相臣, 等. 一种精确计算甲烷在页岩上真实吸附质量的方法: CN201610482070.4 [P]. 2016.
    [27]
    杨李慧, 郑伟中, 孙伟振, 等. 超临界CO2在聚氨酯体系中溶解扩散行为的分子动力学模拟研究 [J]. 石油化工, 2018, 47(1): 1–7 doi: 10.12053/j.issn.1008-2565.2018.01.001

    YANG L H, ZHENG W Z, SUN W Z, et al. Molecular dynamics simulation to investigate the solubility and diffusion of supercritical CO2 in polyurethane systems [J]. Petrochemical Technology, 2018, 47(1): 1–7 doi: 10.12053/j.issn.1008-2565.2018.01.001
    [28]
    LI, M S, HUANG X Y, LIU H S, et al. Solubility prediction of supercritical carbon dioxide in 10 polymers using radial basis function artificial neural network based on chaotic self-adaptive particle swarm optimization and K-harmonic means [J]. RSC Advances, 2015, 5(56): 45520–45527. doi: 10.1039/C5RA07129A
    [29]
    李武广, 杨胜来, 陈峰, 等. 温度对页岩吸附解吸的敏感性研究 [J]. 矿物岩石, 2012, 32(2): 115–120 doi: 10.3969/j.issn.1001-6872.2012.02.015

    LI W G, YANG S L, CHEN F, et al. The sensitivity study of shale gas adsorption and desorption with rising reservoir temperature [J]. Journal of Mineral Petro, 2012, 32(2): 115–120 doi: 10.3969/j.issn.1001-6872.2012.02.015
    [30]
    ROSS D J K, BUSTIN R M. Shale gas potential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada [J]. Bulletin of Canadian Petroleum Geology, 2007, 55(1): 51–75. doi: 10.2113/gscpgbull.55.1.51
    [31]
    周理, 李明, 周亚平. 超临界甲烷在高表面活性炭上的吸附测量及其理论分析 [J]. 中国科学(B辑), 2000, 30(1): 49–56

    ZHOU L, LI M, ZHOU Y P. Adsorption measurement and theoretical analysis of supercritical methane on high surface activated carbon [J]. Science in China (Series B), 2000, 30(1): 49–56
    [32]
    KANEKO K, MURATA K. An analytical method of micropore filling of a supercritical gas [J]. Adsorption-journal of the International Adsorption Society, 1997, 3(3): 197–208. doi: 10.1007/BF01650131
  • Relative Articles

    [1]JIANG Changguo, TAN Dayong, XIE Yafei, LUO Xingli, XIAO Wansheng. Investigation on Structural Stability of γ-Al(OH)3 under High Pressure and Shear Stress[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 011202. doi: 10.11858/gywlxb.20210766
    [2]ABLIZ Matursun, ANWAR Hushur, XIE Cuihuan, QI Wenming. High Pressure Raman Spectroscopic Study of PbCO3 in Different Pressure Transmitting Medium[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 011201. doi: 10.11858/gywlxb.20210813
    [3]ZHAO Huifang, TAN Dayong, JIANG Feng, XIE Yafei, JIANG Changguo, LUO Xingli, XIAO Wansheng. Raman Evidences of Chemical Reaction of Re-H2O System at High Pressure and High Temperature[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 040102. doi: 10.11858/gywlxb.20200518
    [4]JIANG Feng, ZHAO Huifang, XIE Yafei, JIANG Changguo, TAN Dayong, XIAO Wansheng. High Pressure Raman Spectroscopy and X-ray Diffraction of CuS2[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 040104. doi: 10.11858/gywlxb.20200509
    [5]SONG Haipeng, LIU Yungui, LI Xiang, JIN Shuyu, WANG Xinyu, WU Xiang. High-Pressure Raman Spectroscopic Study of Hydroxylbastnäsite-(Ce)[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060105. doi: 10.11858/gywlxb.20190847
    [6]HE Yunhong, TIAN Yu, ZHAO Huifang, JIANG Feng, TAN Dayong, XIAO Wansheng. Raman Evidences for Phase Transition of Sodium Perchlorate at High Pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 041201. doi: 10.11858/gywlxb.20180543
    [7]HAN Xi, WU Ye, HUANG Haijun. High Pressure Raman Investigation of BiFeO3[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051202. doi: 10.11858/gywlxb.20170698
    [8]TIAN Yu, LIU Xue-Ting, HE Yun-Hong, ZHAO Hui-Fang, JIANG Feng, TAN Da-Yong, XIAO Wan-Sheng. Raman Evidences of Chemical Reaction of NaCl-O2 System at High Pressure and High Temperature[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 692-697. doi: 10.11858/gywlxb.2017.06.003
    [9]QIN Zhen-Xing, ZHANG Jian-Bo. Raman Scattering Investigation of Tetramethylsilane under High Pressure[J]. Chinese Journal of High Pressure Physics, 2016, 30(5): 375-379. doi: 10.11858/gywlxb.2016.05.005
    [10]LI Dong-Fei, ZHANG Ke-Wei, LI Zuo-Wei, LIU Cheng-Zhi, GUO Rui, SUN Cheng-Lin, LI Hai-Bo. High Pressure Raman Investigation of Td-WTe2 Bulk Single Crystal[J]. Chinese Journal of High Pressure Physics, 2016, 30(5): 369-374. doi: 10.11858/gywlxb.2016.05.004
    [11]YUAN Zhen, ZHANG Shao-Peng, JIN Chang-Qing, WANG Xiao-Hui. Raman Spectroscopy Studies of Nanocrystalline Lead Zirconate Titanate as Functions of High Pressure[J]. Chinese Journal of High Pressure Physics, 2015, 29(2): 95-98. doi: 10.11858/gywlxb.2015.02.002
    [12]ZHU Xiang, WANG Yong-Qiang, WANG Zheng, CHENG Xue-Rui, YUAN Chao-Sheng, CHEN Zhen-Ping, SU Lei. Pressure-Induced Phase Transition of [Emim][PF6] and [Bmim][PF6] Studied by Raman Scattering[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 253-260. doi: 10.11858/gywlxb.2013.02.013
    [13]CHEN Yuan-Fu, LIU Fu-Sheng, ZHANG Ning-Chao, ZHAO Bei-Jing, WANG Jun-Guo, ZHANG Ming-Jian, XUE Xue-Dong. Measurement System of Transient Raman Spectroscopy and Its Application to Benzene under Shock Compression[J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 505-510. doi: 10.11858/gywlxb.2013.04.006
    [14]GAO Ling-Ling, MA Yan-Mei, LIU Dan, HAO Jian, JIN Yun-Xia, WANG Feng, WANG Qiu-Shi, ZOU Guang-Tian, CUI Qi-Liang. Raman Spectra Characterization of Cycloheptane under High Pressure[J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 192-196 . doi: 10.11858/gywlxb.2008.02.013
    [15]QU Qing-Ming, ZHENG Hai-Fei. Research on Using Raman Spectra of Carborundum Anvil as Pressure Sensor at Pressure of 0.1~3 000 MPa[J]. Chinese Journal of High Pressure Physics, 2007, 21(3): 332-336 . doi: 10.11858/gywlxb.2007.03.020
    [16]ZHANG Hong, XIAO Wan-Sheng, TAN Da-Yong, LUO Chong-Ju, LI Yan-Chun, LIU Jing. Investigation of Phase Transitions of ZrO2 under High-Pressure and High-Temperature Conditions by Raman Spectroscopy[J]. Chinese Journal of High Pressure Physics, 2007, 21(3): 264-268 . doi: 10.11858/gywlxb.2007.03.008
    [17]QIAO Er-Wei, ZHENG Hai-Fei, SUN Qiang. Raman Spectroscopic Studies on Methanol as Pressure Gauge[J]. Chinese Journal of High Pressure Physics, 2004, 18(4): 368-373 . doi: 10.11858/gywlxb.2004.04.014
    [18]ZHAO Jin, ZHENG Hai-Fei. Research on Raman Spectra of Calcite at Pressure of 0.1~800 MPa[J]. Chinese Journal of High Pressure Physics, 2003, 17(3): 226-229 . doi: 10.11858/gywlxb.2003.03.012
    [19]CHEN Jin-Yang, ZHENG Hai-Fei, ZENG Yi-Shan, SUN Qiang. An in-Situ Raman Spectroscopy Study of Isochoric H2O-CO2-CH4 Fluids under High Temperature[J]. Chinese Journal of High Pressure Physics, 2003, 17(1): 8-15 . doi: 10.11858/gywlxb.2003.01.002
    [20]LIU Zhen-Xian, CUI Qi-Liang, ZHAO Yong-Nian, ZOU Guang-Tian. Influence of Pressure-Transmitting Media on the Lattice Vibration and Phase Transition Pressure-High Pressure Raman Spectra Studies of -Bi2O3[J]. Chinese Journal of High Pressure Physics, 1990, 4(2): 81-86 . doi: 10.11858/gywlxb.1990.02.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views(7353) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return