Volume 33 Issue 4
Jul 2019
Turn off MathJax
Article Contents
LIU Yungui, LÜ Zhengxing, SONG Haipeng, WU Xiang. Fluorescence Mechanism of Diamond and the Significance in High Pressure Raman Spectrometry[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 043101. doi: 10.11858/gywlxb.20180689
Citation: LIU Yungui, LÜ Zhengxing, SONG Haipeng, WU Xiang. Fluorescence Mechanism of Diamond and the Significance in High Pressure Raman Spectrometry[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 043101. doi: 10.11858/gywlxb.20180689

Fluorescence Mechanism of Diamond and the Significance in High Pressure Raman Spectrometry

doi: 10.11858/gywlxb.20180689
  • Received Date: 14 Nov 2018
  • Rev Recd Date: 05 Dec 2018
  • High pressure Raman scattering spectrometry which based on the diamond anvil cell technology plays an important role in the high pressure scientific research. The fluorescence of diamond anvil affects on the signal-to-noise ratio of Raman spectral for the sample in cell. The defect centers of 202 gem-grade diamonds have been confirmed by the photoluminescence spectra. The concentration of N3, H3 and NV0 defect centers controls the intensity of the zero-phonon line and the fluorescence emission spectrum, and it is positively correlated to the fluorescence intensity. While, the ratio of background intensity on the two sides of the diamond’s second-order Raman peak (about 2664 cm–1) has a negative correlation with the fluorescence intensity, thus it could be used to estimate the fluorescence intensity of diamond. In addition, the inhomogeneous of the concentration of defect centers is common in diamond, and it will provide more comprehensive information by multipoint analysis. The results will provide effective theoretical and practical basis for the selection of diamond anvil in high pressure Raman spectra measurement.

     

  • loading
  • [1]
    李晓东, 李晖, 李鹏善. 同步辐射高压单晶衍射实验技术 [J]. 物理学报, 2017, 66(3): 136–148.
    [2]
    LI X D, LI H, LI P S. High pressure single-crystal synchrotron X-ray diffraction technique [J]. Acta Physica Sinica, 2017, 66(3): 136–148.
    [3]
    MAO H K, CHEN X J, DING Y, et al. Solids, liquids, and gases under high pressure [J]. Reviews of Modern Physics, 2018, 90(1): 015007. doi: 10.1103/RevModPhys.90.015007
    [4]
    DUBROVINSKY L, DUBROVINSKAIA N, PRAKAPENKA V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar [J]. Nature Communications, 2012, 3: 1163. doi: 10.1038/ncomms2160
    [5]
    TATENO S, HIROSE K, OHISHI Y, et al. The structure of iron earth’s inner core [J]. Science, 2010, 330(6002): 359–361. doi: 10.1126/science.1194662
    [6]
    WU X, LIN J F, KAERCHER P, et al. Seismic anisotropy of the D" layer induced by (001) deformation of post-perovskite [J]. Nature Communications, 2017, 8: 14669. doi: 10.1038/ncomms14669
    [7]
    OHTA K, KUWAYAMA Y, HIROSE K, et al. Experimental determination of the electrical resistivity iron at earth's core conditions [J]. Nature, 2016, 534(7605): 95–98. doi: 10.1038/nature17957
    [8]
    KONÔPKOVÁ Z, MCWILLIAM R S, GÓMEZ-PÉREZ N, et al. Direct measurement of thermal conductivity in solid iron at planetary core conditions [J]. Nature, 2016, 534(7605): 99–101. doi: 10.1038/nature18009
    [9]
    EATON-MAGAÑA S, BREEDING C M. An introduction to photoluminescence spectroscopy for diamond and its applications in gemology [J]. Gems & Gemology, 2016, 52(1): 2–17.
    [10]
    SHIGLEY J E, BREEDING C M. Optical defects in diamond a quick reference chart [J]. Gems & Gemology, 2013, 49(2): 107–111.
    [11]
    ASAMS D M, PAYNE S J. Laser-stimulated fluorescence of diamond [J]. Journal of the Chemical Society Faraday Transactions Molecular & Chemical Physics, 1974, 70(12): 1959–1966.
    [12]
    KUDRYAVTSEV O S, KHOMICH A A, SEDOV V S, et al. Fluorescence and Raman spectroscopy of doped nanodiamonds [J]. Journal of Applied Spectroscopy, 2018, 85(2): 295–299. doi: 10.1007/s10812-018-0647-z
    [13]
    BREEDING C M, SHIGLEY J E. The " type” classification system of diamonds and its importance in gemology [J]. Gems & Gemology, 2009, 45(2): 96–111.
    [14]
    DIERKER S B, ARONSON M C. Reduction of Raman scattering and fluorescence from anvils in high pressure Raman scattering [J]. Review of Scientific Instruments, 2018, 89(5): 053902. doi: 10.1063/1.5027722
    [15]
    HIRSCH K R, HOLZAPFEL W B. Diamond anvil high-pressure cell for Raman spectroscopy [J]. Review of Scientific Instruments, 1981, 52(1): 52–55. doi: 10.1063/1.1136445
    [16]
    EESLEY G L, LEVESON M D. Coherent, nonlinear two-phonon Raman spectra of diamond [J]. Optics Letters, 1978, 3(5): 178–180. doi: 10.1364/OL.3.000178
    [17]
    ENKOVICH P V, BRAZHKIN V V, LYAPIN S G, et al. Quantum effects in diamond isotopes at high pressures [J]. Physical Review B, 2016, 93(1): 014308. doi: 10.1103/PhysRevB.93.014308
    [18]
    SOLIN S A, RAMDAS A K. Raman spectrum of diamond [J]. Physical Review B, 1970, 1(4): 1687–1698. doi: 10.1103/PhysRevB.1.1687
    [19]
    KLEIN C A, HARTNETT T M, ROBINSON C J. Critical-point phonon frequencies of diamond [J]. Physical Review B, 1992, 45(22): 12854. doi: 10.1103/PhysRevB.45.12854
    [20]
    NISSUM M, SHABANOVA E, NIELSEN O F. The second-order Raman spectrum of 13C diamond: an introduction to vibrational spectroscopy of the solid state [J]. Journal of Chemical Education, 2000, 77(5): 633–637. doi: 10.1021/ed077p633
    [21]
    LUO Y, BREEDING C M. Fluorescence produced by optical defects in diamond: measurement, characterization, and challenges [J]. Gems & Gemology, 2013, 49(2): 82–97.
    [22]
    SOONTHORNTANTIKUL W, WANG W Y. Natural colorless type IIa diamond with bright red fluorescence [J]. Gems & Gemology, 2016, 52(2): 189–190.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(9015) PDF downloads(112) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return