Citation: | SUN Wenjuan, CHEN Haibo, HUANG Yingqing. Time Domain Reconstruction Optimization of Pyrotechnic Shock ResponseSpectrum via Adaptive Genetic Algorithm[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 052301. doi: 10.11858/gywlxb.20180681 |
[1] |
LEE J R, CHIA C C, KONG C W. Review of pyroshock wave measurement and simulation for space systems [J]. Measurement, 2012, 45(4): 631–642. doi: 10.1016/j.measurement.2011.12.011
|
[2] |
HIMELBLAU H, KERN D L, MANNING J E, et al. Dynamic environment critical: NASA-HDBK-7005 [R]. Washington, DC: National Aeronautics and Space Administration, 2001.
|
[3] |
ECSS. Space engineering-mechanical shock design and verification handbook: ECSS-E-HB-32-25A [R]. The Netherlands: European Space Agency, 2015.
|
[4] |
ALEXANDER J E. A new method to synthesize a shock response spectrum compatible base acceleration to improve multi-degree of freedom system response [D]. Minneapolis, MN: University of Minnesota, 2015.
|
[5] |
HWANG J H, DURAN A. Stochastic shock response spectrum decomposition method based on probabilistic definitions of temporal peak acceleration, spectral energy, and phase lag distributions of mechanical impact pyrotechnic shock test data [J]. Mechanical Systems and Signal Processing, 2016, 76: 424–440.
|
[6] |
CHONG S Y, LEE J R, KONG C W. Shock response spectra reconstruction of pointwise explosive-induced pyroshock based on signal processing of laser shocks [J]. Shock and Vibration, 2014, 2014: 1–14.
|
[7] |
杜志鹏, 汪玉, 杨洋, 等. 舰艇水下爆炸冲击信号拟合及应用 [J]. 振动与冲击, 2010, 29(3): 182–184. doi: 10.3969/j.issn.1000-3835.2010.03.044
DU Z P, WANG Y, YANG Y, et al. Curve fit method for naval underwater explosion shock and its application [J]. Journal of Vibration and Shock, 2010, 29(3): 182–184. doi: 10.3969/j.issn.1000-3835.2010.03.044
|
[8] |
马道远, 庄方方, 徐振亮. 基于遗传算法的冲击响应谱时域合成方法 [J]. 强度与环境, 2015, 42(5): 49–53.
MA D Y, ZHUANG F F, XU Z L. Time-domain synthesis method for shock response spectrum based on genetic algorithm [J]. Structure and Enviroment Engineering, 2015, 42(5): 49–53.
|
[9] |
YE Z, LI Z, XIE M. Some improvements on adaptive genetic algorithms for reliability-related applications [J]. Reliability Engineering & System Safety, 2010, 95(2): 120–126.
|
[10] |
SRINIVAS M, PATNAIK L M. Adaptive probabilities of crossover and mutation in genetic algorithms [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(4): 656–667. doi: 10.1109/21.286385
|
[11] |
YAN M, HU H, OTAKE Y, et al. Improved adaptive genetic algorithm with sparsity constraint applied to thermal neutron CT reconstruction of two-phase flow [J]. Measurement Science and Technology, 2018, 29(5): 1–14.
|
[12] |
BIOT M A. Transient oscillations in elastic systems [D]. Pasadena, CA: California Institute of Technology, 1932.
|
[13] |
LI B W, LI Q M. Damage boundary of structural components under shock environment [J]. International Journal of Impact Engineering, 2018, 118: 67–77. doi: 10.1016/j.ijimpeng.2018.04.002
|
[14] |
SMALLWOOD D O. An improved recursive formula for calculating shock response spectra [J]. Shock and Vibration Bulletin, 1981, 51(2): 211–217.
|
[15] |
ISO. Mechanical vibration and shock—signal processing—part 4: shock response spectrum analysis: ISO/WD18431-4-2007 [S]. Geneva, Switzerland: ISO, 2007.
|
[16] |
SMALLWOOD D O. A family of transients suitable for reproduction on a shaker based on the cos m(x) window [J]. Journal of the Institute of Environmental Sciences and Technology, 2002, 45(1): 178–184.
|
[17] |
SIAM N. Development of an efficient analysis method for prediction and structural dimensioning of space structures subjected to shock loading [D]. Luleå, Sweden: Luleå University of Technology, 2010.
|
[18] |
DILHAN D, CIPOLLA V, GRZESKOWIAK H, et al. Pyroshock generation [C]//European Conference on Spacecraft Structures, Materials and Mechanical Testing. The Netherlands, 2005: 1–10.
|
[19] |
MONTI R, PAOLO G. Dynamic load synthesis for shock numerical simulation in space structure design [J]. Acta Astronautica, 2017, 137: 222–231. doi: 10.1016/j.actaastro.2017.04.023
|
[20] |
BAI X S, YAN W S, GE S S, et al. An integrated multi-population genetic algorithm for multi-vehicle task assignment in a drift field [J]. Information Sciences, 2018, 453: 227–238. doi: 10.1016/j.ins.2018.04.044
|