Volume 33 Issue 5
Sep 2019
Turn off MathJax
Article Contents
XIAO Yihua, WU Hecheng, ZHU Aihua, DONG Huanghuang, PING Xuecheng. Effect of Rotation on Penetration of Steel Plate by Ogival Projectile Using Coupled FEM-SPH Simulation[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055103. doi: 10.11858/gywlxb.20180675
Citation: XIAO Yihua, WU Hecheng, ZHU Aihua, DONG Huanghuang, PING Xuecheng. Effect of Rotation on Penetration of Steel Plate by Ogival Projectile Using Coupled FEM-SPH Simulation[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055103. doi: 10.11858/gywlxb.20180675

Effect of Rotation on Penetration of Steel Plate by Ogival Projectile Using Coupled FEM-SPH Simulation

doi: 10.11858/gywlxb.20180675
  • Received Date: 07 Nov 2018
  • Rev Recd Date: 28 Nov 2018
  • A coupled FEM-SPH model for an ogival-nosed projectile penetrating into a steel plate was established. The influence of friction coefficient between projectile and plate on residual velocity estimation for projectile was analyzed. Based on the experimental data, a suitable friction coefficient was determined such that the model can accurately predict residual velocities of projectile and ballistic limit of target. Based on the model, effects of projectile rotation on its residual velocity and ballistic deflection were studied for normal and oblique penetration with two different incident velocities and different incident angles. For normal penetration, rotation has a significant influence on residual velocity of projectile while few effects on ballistic deflection. The residual velocity and penetration capability of projectile increase with the growth of rotation speed. For oblique penetration, rotation has obvious effects on both residual velocity and ballistic deflection of projectile. The penetration capability of projectile does not monotonically increase with the growth of rotation speed and is dependent on incident angle and velocity. Deflections out of incident plane are induced by projectile rotation, and the deflection direction is related to the rotation direction of projectile.

     

  • loading
  • [1]
    李晓杰, 姜力, 赵铮, 等. 高速旋转弹头侵彻运动金属薄板的数值模拟 [J]. 爆炸与冲击, 2008, 28(1): 57–61. doi: 10.3321/j.issn:1001-1455.2008.01.010

    LI X J, JIANG L, ZHAO Z, et al. Numerical study on penetration of a high-speed-rotating bullet into the moving sheet-metal plate [J]. Explosion and Shock Waves, 2008, 28(1): 57–61. doi: 10.3321/j.issn:1001-1455.2008.01.010
    [2]
    李勇, 于海龙, 芮筱亭. 旋转弹侵彻钢板的数值模拟 [J]. 火力与指挥控制, 2014(12): 31–35.

    LI Y, YU H L, RUI X T. Numerical study on penetration of rotating projectile into steel plate [J]. Fire Control & Command Control, 2014(12): 31–35.
    [3]
    赵海龙, 王华. 旋转战斗部侵彻多层间隔靶的终点弹道的数值模拟 [J]. 中北大学学报(自然科学版), 2017, 38(3): 295–301. doi: 10.3969/j.issn.1673-3193.2017.03.009

    ZHAO H L, WANG H. Numerical simulation of terminal ballistic of rotating warhead penetrating into multi-layer spaced target [J]. Journal of North University of China (Natural Science Edition), 2017, 38(3): 295–301. doi: 10.3969/j.issn.1673-3193.2017.03.009
    [4]
    庞春旭, 何勇, 沈晓军, 等. 刻槽弹体旋转侵彻铝靶试验与数值模拟 [J]. 弹道学报, 2015, 27(1): 70–75. doi: 10.3969/j.issn.1004-499X.2015.01.014

    PANG C X, HE Y, SHEN X J, et al. Experimental investigation and numerical simulation on grooved projectile rotationally penetrating into aluminum target [J]. Journal of Ballistics, 2015, 27(1): 70–75. doi: 10.3969/j.issn.1004-499X.2015.01.014
    [5]
    庞春旭, 何勇, 沈晓军, 等. 刻槽弹体旋转侵彻混凝土效应试验研究 [J]. 兵工学报, 2015, 36(1): 46–52. doi: 10.3969/j.issn.1000-1093.2015.01.007

    PANG C X, HE Y, SHEN X J, et al. Experimental investigation on penetration of grooved projectiles into concrete targets [J]. Acta Armamentarii, 2015, 36(1): 46–52. doi: 10.3969/j.issn.1000-1093.2015.01.007
    [6]
    潘绪超, 何勇, 何源, 等. 旋转助推钻地弹侵彻混凝土靶试验研究 [J]. 固体火箭技术, 2011, 34(2): 146–149. doi: 10.3969/j.issn.1006-2793.2011.02.003

    PAN X C, HE Y, HE Y, et al. Experimental study of penetrating concrete target with a spin-boosted earth penetrating weapon [J]. Journal of Solid Rocket Technology, 2011, 34(2): 146–149. doi: 10.3969/j.issn.1006-2793.2011.02.003
    [7]
    赵子龙, 张瑾瑾, 黄晓琼. 长杆弹侵彻半无限厚土的旋转效应分析 [J]. 振动与冲击, 2010, 29(4): 9–11. doi: 10.3969/j.issn.1000-3835.2010.04.003

    ZHAO Z L, ZHANG J J, HUANG X Q. Revolution effect analysis of a long rod penetrating into soil [J]. Journal of Vibration & Shock, 2010, 29(4): 9–11. doi: 10.3969/j.issn.1000-3835.2010.04.003
    [8]
    GUPTA N K, MADHU V. Normal and oblique impact of a kinetic energy projectile on mild steel plates [J]. International Journal of Impact Engineering, 1992, 12(3): 333–343. doi: 10.1016/0734-743X(92)90101-X
    [9]
    MADHU V, RAMANJANEYULU K, BHAT T B, et al. An experimental study of penetration resistance of ceramic armour subjected to projectile impact [J]. International Journal of Impact Engineering, 2005, 32(1): 337–350.
    [10]
    DEY S, BØRVIK T, HOPPERSTAD O S, et al. The effect of target strength on the perforation of steel plates using three different projectile nose shapes [J]. International Journal of Impact Engineering, 2004, 30(8): 1005–1038.
    [11]
    BØRVIK T, HOPPERSTAD O S, BERSTAD T, et al. A computational model of viscoplasticity and ductile damage for impact and penetration [J]. European Journal of Mechanics-A/Solids, 2001, 20(5): 685–712. doi: 10.1016/S0997-7538(01)01157-3
    [12]
    ROSENBERG Z, DEKEL E. 终点弹道学[M]. 钟方平, 译. 北京: 国防工业出版社, 2014: 85–86.
    [13]
    BØRVIK T, HOPPERSTAD O S, BERSTAD T, et al. Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses: part Ⅱ: numerical simulations [J]. International Journal of Impact Engineering, 2002, 27(1): 37–64. doi: 10.1016/S0734-743X(01)00035-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(3)

    Article Metrics

    Article views(7530) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return