Volume 33 Issue 5
Sep 2019
Turn off MathJax
Article Contents
ZHOU Hongqiang, ZHANG Fengguo, PAN Hao, HE Anmin, WANG Pei. Main Progress in Research on Material Spalling[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 050301. doi: 10.11858/gywlxb.20180670
Citation: ZHOU Hongqiang, ZHANG Fengguo, PAN Hao, HE Anmin, WANG Pei. Main Progress in Research on Material Spalling[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 050301. doi: 10.11858/gywlxb.20180670

Main Progress in Research on Material Spalling

doi: 10.11858/gywlxb.20180670
  • Received Date: 22 Oct 2018
  • Rev Recd Date: 10 Jan 2019
  • Spallation is an important damage and failure mechanism produced by the interactions of decompression waves from the material interfaces, and is mesoscopically attributed to the nucleation, growth and coalescence of microdamages (microvoids and microcracks). Based on the works of Grady, Curran and Johnson, who respectively won George E. Duvall Shock Compression Science Award of the American Physical Society in 2007, 2009 and 2011, this paper gives a review of the progress and brief history for dynamic material spall. Further physical insights may be obtained based on those known physical models and experimental techniques for dynamic material spallation. In the meantime, some valuable results obtained are presented as follows. (1) Experimental technique of double layer targets, used to freeze the state of spall damage, is based on the same basic physical principle of Hopkinson pressure bar. (2) The nucleation, growth to fragmentation (NAG/FRAG) model, which is mathematically inconsistent and physically incomplete, is modified by inheriting the same size exponential distribution and nucleation rate from the original model by assuming the growth rate of microvoid’s radius proportional to the microvoid’s radius for ductile spall. A modified nucleation and growth (MNAG) model is obtained. The MNAG model is mathematically consistent and physically closed, and owns an analytical damage evolution equation. (3) It is pointed out that the damage can usually be obtained from the equation of microdamage’s number for Lagrangian formulation rather than from the equation for Eulerian formulation presented by Bai Yilong et al. (4) The damage function model or the Feng-Jiapo model is derived by a simpler way.

     

  • loading
  • [1]
    HOPKINSON B. Brittleness and ductility [M]. London: Cambridge University Press, 1910: 64–76.
    [2]
    HOPKINSON B. The pressure of a blow [J]. Nature, 1912, 88(2207): 531–536.
    [3]
    HOPKINSON B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets [J]. Philosophical Transactions of the Royal Society of London, 1914, 213213A: 437–456.
    [4]
    SEAMAN L, CURRAN D R, SHOCKEY D A. Computational models for ductile and brittle fracture [J]. Journal of Applied Physics, 1976, 47(11): 4814–4826. doi: 10.1063/1.322523
    [5]
    ERLICH D C, WOOTEN D C, CREWDSON R C. Dynamic tensile failure of glycerol [J]. Journal of Applied Physics, 1971, 42(13): 5495–5502. doi: 10.1063/1.1659970
    [6]
    CURRAN D R, SEAMAN L, SHOCKEY D A. Dynamic failure of solids [J]. Physics Reports, 1987, 147(5/6): 253–388.
    [7]
    SHOCKEY D A, SEAMAN L, CURRAN D R, et al. A computational model for fragmentarion of Armco iron under ballistic impact [R]. Aberdeen Proving Ground, MD: SRI Intermational for the U. S. Ballistic Research Laborotories, 1973.
    [8]
    MEYERS M A, AIMONE C T. Dynamic fracture (spalling) of metals [J]. Progress in Materials Science, 1983, 28(1): 1–96. doi: 10.1016/0079-6425(83)90003-8
    [9]
    白以龙. 冲击载荷下材料的损伤和破坏 [M]//王礼立, 余同希, 李永池. 冲击动力学进展. 合肥: 中国科学技术出版社, 1992: 34–57.

    BAI Y L. Material damage and failure under shock loading [M]//WANG L L, YU T X, LI Y C. Advances in Dynamic Mechanics. Hefei: University of Science and Technology of China Press, 1992: 34–57.
    [10]
    黄筑平, 杨黎明, 潘客麟. 材料的动态损伤和失效 [J]. 力学进展, 1993, 23(4): 433–467. doi: 10.6052/1000-0992-1993-4-J1993-042

    HUANG Z P, YANG L M, PAN K L. Dynamic damage and failure of materials [J]. Advances in Mechanics, 1993, 23(4): 433–467. doi: 10.6052/1000-0992-1993-4-J1993-042
    [11]
    GRADY D E, KIPP M E. Dynamic fracture and fragmentation [M]//ASAY J R, SHAHINPOOR M. High-Pressure Shock Compression of Solids. New York: Springer-Verlag, 1993: 265–322.
    [12]
    DAVISON LEE, GRADY D, SHAHINPOOR M. High-pressure shock compression of solids II: dynamic fracture and fragmentation [M]. New York: Springer-Verlag, 1996.
    [13]
    ANTOUN T, SEAMAN L, CURRAN D R, et al. Spall fracture [M]. New York: Springer-Verlag, 2002.
    [14]
    GRADY D. Dynamic fragmentation of solids [M]//HORIE Y. Shock Wave Science and Technology Reference Library: Vol. 3., Solids II. Berlin Heidelberg: Spring-Verlag, 2009: 169–276.
    [15]
    KANEL G I. Spall fracture: methodological aspects, mechanisms and governing factors [J]. International Journal of Fracture, 2010, 163(1): 173–191.
    [16]
    CHEN X, ASAY J R, DWIVEDI S K, et al. Spall behavior of aluminum with varying microstructures [J]. Journal of Applied Physics, 2006, 99(2): 023528. doi: 10.1063/1.2165409
    [17]
    ELERT M, FURNISH M D, CHAU R, et al. Shock compression of condensed matter-2007 [C]//New York: AIP Conference Proceedings, 2008: 955.
    [18]
    GRADY D E. The spall strength of condensed matter [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 353–384. doi: 10.1016/0022-5096(88)90015-4
    [19]
    ELERT M, BUTTLER W T, FURNISH M D, et al. Shock compression of condensed matter-2009 [C]//New York: AIP Conference Proceedings, 2010: 1195.
    [20]
    ELERT M, BUTTLER W T, BORG J P, et al. Shock compression of condensed matter-2011 [C]. New York: AIP Conference Proceedings, 2012: 1426.
    [21]
    JOHNSON J N. Dynamic fracture and spallation in ductile solids [J]. Journal of Applied Physics, 1981, 52(4): 2812–2825. doi: 10.1063/1.329011
    [22]
    JOHNSON J N, ADDESSIO F L. Tensile plasticity and ductile fracture [J]. Journal of Applied Physics, 1988, 64(12): 6699–6712. doi: 10.1063/1.342000
    [23]
    JOHNSON J N, ADDESSIO F L. Rate-dependent ductile failure model [J]. Journal of Applied Physics, 1993, 74(3): 1640–1648. doi: 10.1063/1.354814
    [24]
    MACKENZIE J H. The elastic constants of a solid containing spherical holes [J]. Proceedings of the Physical Society B, 1950, 63(1): 2–11. doi: 10.1088/0370-1301/63/1/302
    [25]
    ZUO Q H, RICE J R. An implicit algorithm for a rate-dependent ductile failure model [J]. Journal of Applied Physics, 2008, 104(8): 083526. doi: 10.1063/1.3005883
    [26]
    GURSON A L. Continuum theory of ductile rupture by void nucleation and growth: part I-yield criteria and flow rules for porous ductile media [J]. Journal of Engineering Materials and Technology, 1977, 99(1): 2–15. doi: 10.1115/1.3443401
    [27]
    RAJENDRAN A M, DIETENBERGER M A, GROVE D J. A void growth-based failure model to describe spallation [J]. Journal of Applied Physics, 1989, 85(4): 1521–1527.
    [28]
    FENG J P, JING F Q, ZHANG G R. Dynamic ductile fragmentation and the damage function model [J]. Journal of Applied Physics, 1997, 81(6): 2575–2578. doi: 10.1063/1.363921
    [29]
    CARROLL M, HOLT A C. Suggested modification of the P-α model for porous materials [J]. Journal of Applied Physics, 1972, 43(2): 759–761. doi: 10.1063/1.1661203
    [30]
    SIMO J C, HUGHES T J R. Computational inelasticity [M]. New York: Springer-Verlag, 1998.
    [31]
    余同希. Hopkinson杆和Hopkinson的故事 [J]. 力学与实践, 2013, 35(3): 97–99. doi: 10.6052/1000-0879-12-435

    YU T X. Hopkinson bar and the stories of Hopkinson [J]. Mechanics in Engineering, 2013, 35(3): 97–99. doi: 10.6052/1000-0879-12-435
    [32]
    王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005: 57–58.

    WANG L L. The base of stress wave [M]. 2nd ed. Beijing: Defense Industry Press, 2005: 57–58.
    [33]
    KOLSKY H. An investigation of the mechanical properties of materials at very high rates of loading [J]. Proceedings of the Royal Society B, 1949, 62(11): 676–700.
    [34]
    THISSELL W R, ZUREK A K, MACDOUGALL D A S, et al. The effect of material cleanliness on dynamic damage evolution in 10100 Cu [C]// FURNISH M D, THADHANI N N, HORIE Y. Shock Compression of Condensed Matter-2001. New York: AIP Conference Proceedings, 2002: 475–478.
    [35]
    REED R P, SCHUSTER D M. Filament fracture and postimpact strength of boron-aluminum composites [J]. Journal of Composite Materials, 1970, 4(4): 514–525. doi: 10.1177/002199837000400407
    [36]
    GRAY III G T. Influence of shock-wave deformation on the structure/property behavior of materials [M]//ASAY J R, SHAHINPOOR M. High-Pressure Shock Compression of Solids. New York: Springer-Verlag, 1993: 187–215.
    [37]
    LLORCA F, ROY G. Metallurgical investigation of dynamic damage in tantalum [C]//FURNISH M D, GUPTA Y M, FORBES J W. Shock Compression of Condensed Matter-2003. New York: AIP Conference Proceedings, 2004: 589–592.
    [38]
    CZARNOTA C, JACQUES N, MERCIER S, et al. Modeling of dynamic ductile fracture and application to the simulation of plate impact tests on tantalum [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(4): 1624–1650. doi: 10.1016/j.jmps.2007.07.017
    [39]
    洪滔. 高强动载荷下延性金属损伤演化研究: 2009A0101007 [R]. 绵阳: 中国工程物理研究院, 2012.

    HONG T. Study on the damage evolution of ductile metals under high-rate and high-pressure loading: 2009A0101007 [R]. Mianyang: China Academy of Engineering Physics, 2012.
    [40]
    裴晓阳, 彭辉, 贺红亮, 等. 加载应力幅值对高纯铜动态损伤演化特性研究 [J]. 物理学报, 2015, 64(5): 054601. doi: 10.7498/aps.64.054601

    PEI X Y, PENG H, HE H L, et al. Study on the effect of peak stress on dynamic damage evolution of high pure copper [J]. Acta Physica Sinica, 2015, 64(5): 054601. doi: 10.7498/aps.64.054601
    [41]
    RHODES R. Introduction [M]//The Los Alamos Primer: the First Lectures on How to Build an Atomic Bomb, 1992.
    [42]
    REED B C. The history and science of the manhattan project [M]. Berlin: Springer-Verlag, 2014: 307–308.
    [43]
    ANDRIOT P, CHAPRON P, LAMBERT V, et al. Influence of melting on shocked free surface behaviour using Doppler laser interferometry and X-ray densitometry [C]//ASAY J R, GRAHAM R A, STRAUB G K. Shock Waves in Condensed Matter-1983. Northe-Holland, Amsterdam, 1984: 227–230.
    [44]
    HOLTKAMP D B, CLARK D A, FERM E N, et al. A survey of high explosive-induced damage and spall in selected metals using proton radiography [C]//FURNISH M D, GUPTA Y M, FORBES J W. Shock Compression of Condensed Matter-2003. New York: AIP Conference Proceedings, 2004: 477–482.
    [45]
    SIGNOR L, DE RESSÉGUIER T, DRAGON A, et al. Investigation of fragments size resulting from dynamic fragmentation in melted state of laser shock-loaded tin [J]. International Journal of Impact Engineering, 2010, 37(8): 887–900. doi: 10.1016/j.ijimpeng.2010.03.001
    [46]
    MOTT N F. Transcription and facsimiles of reports of N. F. Mott [M]//GRADY D. Fragmentation of Rings and Shells. Berlin: Spring-Verlag, 2006: 203–373.
    [47]
    MOTT N F. Fragmentation of shell cases [J]. Proceedings of the Royal Society, 1947, 189A(1018): 300–308.
    [48]
    RINEHART J S. Some quantitative data bearing on the scabbing of metals under explosive attack [J]. Journal of Applied Physics, 1951, 22(5): 555–560. doi: 10.1063/1.1700005
    [49]
    RINEHART J S. Behaviour of metals under impulsive loads [M]. Cleveland: American Society for Metals, 1954: 151.
    [50]
    WHITEMAN P. Preliminary report on the effect of stress rate on the dynamic fracture of steel, brass and aluminum: UNDEX445 [R]. Britain: Atomic Weapons Research Establishment, 1962.
    [51]
    SKIDMORE I C. Introduction to shock waves in solids [J]. Applied Materials Research, 1965, 4(3): 131–140.
    [52]
    BREED B R, MADER C L, VENABLE D. Technique for the determination of dynamic-tensile-strength characteristics [J]. Journal of Applied Physics, 1967, 38(8): 3271–3275. doi: 10.1063/1.1710098
    [53]
    THURSTON R S, MUDD W L. Spallation criteria for numerical computation: LA4013XAB [R]. Los Alamos Scientific Labortories, 1968.
    [54]
    RYBAKOV A P. Spall in non-one-dimensional shock waves [J]. International Journal of Impact Engineering, 2000, 24(10): 1041–1082. doi: 10.1016/S0734-743X(00)00029-4
    [55]
    GATHERS G R. Determination of spall strength from surface motion studies [J]. Journal of Applied Physics, 1990, 67(9): 4090–4092. doi: 10.1063/1.344967
    [56]
    CHHABILDAS L C, BARKER L M, ASAY J R, et al. Relationship of fragment size to normalized spall strength for materials [J]. International Journal of Impact Engineering, 1990, 10(1): 107–124.
    [57]
    KANEL G I, RAZORENOV S V, UTKIN A V. Spallation in solids under shock-wave loading: analysis of dynamic flow, methodology of measurements, and constitutive factors [M]//DAVISON LEE, GRADY D, SHAHINPOOR M. High-Pressure Shock Compression of Solids II: Dynamic Fracture and Fragmentation, New York: Springer-Verlag, 1996.
    [58]
    陈大年, 俞宇颖, 尹志华, 等. 对于层裂强度传统测定方法有效性的讨论 [J]. 工程力学, 2006, 23(1): 62–68. doi: 10.3969/j.issn.1000-4750.2006.01.013

    CHEN D N, YU Y Y, YIN Z H, et al. On the validity of the traditional methodology of spall strength measurement [J]. Engineering Mechanics, 2006, 23(1): 62–68. doi: 10.3969/j.issn.1000-4750.2006.01.013
    [59]
    HIXSON R S, GRAY III G T, RIGG P A, et al. Dynamic damage investigations using triangular waves [C]//FURNISH M D, GUPTA Y M, FORBES J W. Shock Compression of Condensed Matter-2003. New York: AIP Conference Proceedings, 2004: 469–472.
    [60]
    KOLLER D D, HIXSON R S, GRAY III G T, et al. Influence of shock-wave profile shape on dynamically induced damage in high-purity copper [J]. Journal of Applied Physics, 2005, 98(10): 103518. doi: 10.1063/1.2128493
    [61]
    KIPP M E, GRADY D E. Experimental and numerical studies of high-velocity impact fragmentation [M]//DAVISON L, GRADY D, SHAHINPOOR M. High-Pressure Shock Compression of Solids II: Dynamic Fracture and Fragmentation. New York: Springer-Verlag, 1996: 282–339.
    [62]
    GRADY D E. Spall and fragmentation in high-temperature metals [C]//DAVISON L, GRADY D, SHAHINPOOR M. High-Pressure Shock Compression of Solids II: Dynamic Fracture and Fragmentation. New York: Springer-Verlag, 1996: 219–236.
    [63]
    CURRAN D R, SEAMAN L. Simplfied models of fracture and fragmentation [C]//DAVISON L, GRADY D, SHAHINPOOR M. High-Pressure Shock Compression of Solids II: Dynamic Fracture and Fragmentation. New York: Springer-Verlag, 1996: 340–365.
    [64]
    朱兆祥, 李永池, 王肖钧. 爆炸作用下钢板层裂的数值分析 [J]. 应用数学和力学, 1981, 2(4): 353–368.

    ZHU Z X, LI Y C, WANG X J. Numerical analysis of the spallation of steel target under the explosive loading [J]. Applied Mathematics and Mechanics, 1981, 2(4): 353–368.
    [65]
    MCQUEEN R G, MARSH S P. Ultimate yield strength of copper [J]. Journal of Applied Physics, 1962, 33(2): 654–665. doi: 10.1063/1.1702483
    [66]
    BUTCHER B M, BARKER L M, MURSON D E, et al. Influence of stress history on time-dependent spall in metals [J]. AIAA Journal, 1964, 2(6): 977–990. doi: 10.2514/3.2484
    [67]
    TULER F R, BUTCHER B M. A criterion for the time dependence of dynamic fracture [J]. The International Journal of Fracture Mechanics, 1968, 4(4): 431–437.
    [68]
    DAVISON L, STEVENS A L. Continuum measures of spall damage [J]. Journal of Applied Physics, 1972, 43(3): 988–994. doi: 10.1063/1.1661319
    [69]
    DAVISON L, STEVENS A L. Thermomechanical constitution of spalling elastic bodies [J]. Journal of Applied Physics, 1973, 44(2): 668–674. doi: 10.1063/1.1662242
    [70]
    CURRAN D R. Mesomechanical modeling of fracture [C]//ELERT M, BUTTLER W T, FURNISH M D, et al. Shock Compression of Condensed Matter-2009. New York: AIP Conference Proceedings, 2010: 3–10.
    [71]
    周洪强, 张凤国. 层裂损伤成核和生长模型的修正 [J]. 兵工学报, 2013, 34(Suppl 1): 50–52.

    ZHOU H Q, ZHANG F G. The modified damage nucleation and growth model for ductile spall [J]. Acta Armamentarii, 2013, 34(Suppl 1): 50–52.
    [72]
    柯孚久, 白以龙, 夏蒙棼. 理想微裂纹系统演化的特征 [J]. 中国科学A辑, 1990(6): 621–631. doi: 10.3321/j.issn:1006-9232.1990.06.002
    [73]
    KE F J, BAI Y L, XIA M F. Evolution of ideal micro-crack system [J]. Science in China (A), 1990, 33(12): 1447–1459.
    [74]
    白洁, 夏蒙棼, 柯孚久, 等. 损伤统计演化方程的性质和数值模拟 [J]. 力学学报, 1999, 31(1): 38–48. doi: 10.3321/j.issn:0459-1879.1999.01.005

    BAI J, XIA M F, KE F J, et al. Properties of the statistical damage evolution equation and its numerical simulation [J]. Acta Mechanica Sinica, 1999, 31(1): 38–48. doi: 10.3321/j.issn:0459-1879.1999.01.005
    [75]
    MOLINARI A, WRIGHT T W. A physical model for nucleation and early growth of voids in ductile materials under dynamic loading [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(7): 1476–1504. doi: 10.1016/j.jmps.2005.02.010
    [76]
    CZARNOTA C, MERCIER S, MOLINARI A. Modeling of nucleation and void growth in dynamic pressure loading, application to spall test on tantalum [J]. International Journal of Fracture, 2006, 141(1): 177–194.
    [77]
    WRIGHT T W, RAMESH K T. Dynamic void nucleation and growth in solids: a self-consistent statistical theory [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(2): 336–359. doi: 10.1016/j.jmps.2007.05.012
    [78]
    JACQUES N, CZARNOTA C, MERCIER S, et al. A micromechanical constitutive model for dynamic damage and fracture of ductile materials [J]. International Journal of Fracture, 2010, 162(1): 159–175.
    [79]
    KNOWLES J K, JAKUB M T. Finite dynamic deformations of an incompressible elastic medium containing a spherical cavity [J]. Archive for Rational Mechanics and Analysis, 1965, 18(5): 367–378. doi: 10.1007/BF00281326
    [80]
    CARROLL M M, HOLT A C. Static and dynamic pore-collapse relations for ductile porous materials [J]. Journal of Applied Physics, 1972, 43(4): 1626–1636. doi: 10.1063/1.1661372
    [81]
    HERRMANN W. Constitutive equation for the dynamic compaction of ductile porous materials [J]. Journal of Applied Physics, 1969, 40(6): 2490–2499. doi: 10.1063/1.1658021
    [82]
    JOHNSON J N. Memories of shock wave research at Sandia [M]//ASAY J R, CHHABILDAS L C, LAWRENCE R J, et al. Impactful Times: Memories of 60 Years of Shock Wave Research at Sandia National Laboratories. Gewerbestrasse: Springer International Publishing AG, 2017: 435–437.
    [83]
    WILKERSON J W, RAMESH K T. A dynamic void growth model governed by dislocation kinetics [J]. Journal of the Mechanics and Physics of Solids, 2014, 70(1): 262–280.
    [84]
    WILKERSON J W, RAMESH K T. Unraveling the anomalous grain size dependence of cavitation [J]. Physical Review Letters, 2016, 117(21): 215503. doi: 10.1103/PhysRevLett.117.215503
    [85]
    WILKERSON J W. On the micromechanics of void dynamics at extreme rates [J]. International Journal of Plasticity, 2017, 95(1): 1–22.
    [86]
    BECKER R. Direct numerical simulation of ductile spall failure [J]. International Journal of Fracture, 2017, 208(1): 5–26.
    [87]
    PERZYNA P. Internal state variable description of dynamic fracture of ductile solids [J]. International Journal of Solids and Structures, 1986, 22(7): 797–818. doi: 10.1016/0020-7683(86)90123-X
    [88]
    CORTES R. The growth of microvoids under intense dynamic loading [J]. International Journal of Solids and Structures, 1992, 29(11): 1339–1350. doi: 10.1016/0020-7683(92)90082-5
    [89]
    TONKS D L, VORTHMAN J E, HIXSON R, et al. Spallation studies on shock loaded U-6 WT PCT NB [C]//FURNISH M D, CHHABILDAS L C, HIXSON R S. Shock Compression of Condensed Matter-1999. New York: AIP Conference Proceedings, 2000: 329–332.
    [90]
    ORTIZ M, MOLINARI A. Effect of strain hardening and rate sensitivity on the dynamic growth of a void in a plastic material [J]. Journal of Applied Mechanics, 1992, 59(1): 48–53. doi: 10.1115/1.2899463
    [91]
    MCCLINTOCK F A. A criterion for ductile fracture by the growth of holes [J]. Journal of Applied Mechanics, 1968, 35(2): 363–371. doi: 10.1115/1.3601204
    [92]
    RICE J R, TRACEY D M. On the ductile enlargement of voids in triaxial stress fields [J]. Journal of the Mechanics and Physics of Solids, 1969, 17(3): 201–217. doi: 10.1016/0022-5096(69)90033-7
    [93]
    GURSON A L. Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth, and interaction [D]. Rhode Island: Brown University, 1975.
    [94]
    LI S F, WANG G. Introduction to Micromechanics and Nanomechanics [M]. Singapore: World Scientific Publishing Private Limited, 2008: 267–280.
    [95]
    LEE B J, MEAR M E. Studies of the growth and collapse of voids in viscous solids [J]. Journal of Engineering Materials and Technology, 1994, 116(3): 348–358. doi: 10.1115/1.2904298
    [96]
    HSU C Y, LEE B J, MEAR M E. Constitutive models for power-law viscous solids containing spherical voids [J]. International Journal of Plasticity, 2009, 25(1): 134–160. doi: 10.1016/j.ijplas.2007.11.003
    [97]
    GOLOGANU M, LEBLOND J B, PERRIN G, et al. Recent extensions of Gurson’s model for porous ductile metals [M]// SUQUET P. Continnum Micromechanics. New York: Springer, 1997: 61–130.
    [98]
    BENZERGA A A, BESSON J. Plastic potentials for anisotropic porous solids-A/solids [J]. European Journal of Mechanics, 2001, 20(3): 397–434. doi: 10.1016/S0997-7538(01)01147-0
    [99]
    KERALAVARMA S M, BENZERGA A A. A constitutive model for plastically anisotropic solids with non-spherical voids [J]. Journal of the Mechanics and Physics of Solids, 2010, 58(6): 874–901. doi: 10.1016/j.jmps.2010.03.007
    [100]
    GURSON A L. Porous rigid-pplastic materials containing rigid inclusion-yield fuction, plastic potential, and void nucleation [C]//TAPLIN D M R. Proceeding of the Fourth International Conference on Fracture. Toronto: Pergamon Press, 1977: 357–364.
    [101]
    TVERGAARD V. Influence of voids on shear band instabilities under plane strain conditions [J]. International Journal of Fracture, 1981, 17(4): 389–407. doi: 10.1007/BF00036191
    [102]
    TVERGAARD V, NEEDLEMAN A. Analysis of cup-cone fracture in a round tensile bar [J]. Acta Metallurgica, 1984, 32(1): 157–169. doi: 10.1016/0001-6160(84)90213-X
    [103]
    PARDOEN T, HUTCHINSON J W. An extended model for void growth and coalescence [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(12): 2467–2512. doi: 10.1016/S0022-5096(00)00019-3
    [104]
    TVERGAARD V. Material failure by void growth to coalescence [M]//HUTCHINSON J W, WU T Y. Advances in Applied Mechanics. Amsterdam: Academic Press, 1990, 27: 83–151.
    [105]
    BENZERGA A A, LEBLOND J B. Ductile fracture by void growth to coalescence [M]//AREF H, VAN DER GIESSEN E. Advances in Applied Mechanics. Amsterdam: Academic Press, 2010, 44: 169–305.
    [106]
    ADDESSIO F L, ZUO Q H, MASON T A, et al. Model for high-strain-rate deformation of uranium-niobium alloys [J]. Journal of Applied Physics, 2003, 93(12): 9644–9654. doi: 10.1063/1.1576302
    [107]
    CHU C, NEEDLEMAN A. Void nucleation effects in biaxially stretched sheets [J]. Journal of Engineering Materials and Technology, 1980, 102(3): 249–256. doi: 10.1115/1.3224807
    [108]
    ROUSSELIER G. Ductile fracture models and their potential in local approach of fracture [J]. Nuclear Engineering and Design, 1987, 105(1): 97–111. doi: 10.1016/0029-5493(87)90234-2
    [109]
    陈永涛, 任国武, 汤铁钢, 等. 爆轰加载下金属样品的熔化破碎现象诊断 [J]. 物理学报, 2013, 62(11): 116202. doi: 10.7498/aps.62.116202

    CHEN Y T, REN G W, TANG T G, et al. Experimental diagnostic of melting fragments under explosive loading [J]. Acta Physica Sinica, 2013, 62(11): 116202. doi: 10.7498/aps.62.116202
    [110]
    SIGNOR L, DRAGON A, ROY G, et al. Dynamic fragmentation of melted metals upon intense shock wave loading. Some modeling issues applied to a tine target [J]. Archives of Mechanics, 2008, 60(4): 323–343.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views(9558) PDF downloads(155) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return