Citation: | PENG Kefeng, PAN Hao, ZHAO Kai, ZHENG Zhijun, YU Jilin. Dynamic Compaction Behaviors of Copper Powders Using Multi-Particle Finite Element Method[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044102. doi: 10.11858/gywlxb.20180665 |
[1] |
KELLY A, ZWEBEN C. Comprehensive composite materials [J]. Materials Today, 1999, 2(1): 20–21. doi: 10.1016/S1369-7021(99)80033-9
|
[2] |
CLYNE T W, WITHERS P J. An introduction to metal matrix composites [M]. New York, NY, USA: Cambridge University Press, 1993, 1(1): 155–164.
|
[3] |
KONDO K I, SOGA S, SAWAOKA A, et al. Shock compaction of silicon carbide powder [J]. Journal of Materials Science, 1985, 20(3): 1033–1048. doi: 10.1007/BF00585748
|
[4] |
MORRIS D G. Bonding processes during the dynamic compaction of metallic powders [J]. Materials Science & Engineering, 1983, 57(2): 187–195.
|
[5] |
SHAO B, LIU Z, ZHANG X. Explosive consolidation of amorphous cobalt-based alloys [J]. Journal of Materials Processing Technology, 1999, 85(1/2/3): 121–124.
|
[6] |
CARROLL M M, HOLT A C. Static and dynamic pore-collapse relations for ductile porous materials [J]. Journal of Applied Physics, 1972, 43(4): 1626–1636. doi: 10.1063/1.1661372
|
[7] |
BUTCHER B M, CARROLL M M, HOLT A C. Shock-wave compaction of porous aluminum [J]. Journal of Applied Physics, 1974, 45(9): 3864–3875. doi: 10.1063/1.1663877
|
[8] |
BOADE R R. Dynamic compression of porous tungsten [J]. Journal of Applied Physics, 1969, 40(9): 3781–3785. doi: 10.1063/1.1658272
|
[9] |
THADHANI N N, GRAHAM R A, ROYAL T, et al. Shock-induced chemical reactions in titanium-silicon powder mixtures of different morphologies: time-resolved pressure measurements and materials analysis [J]. Journal of Applied Physics, 1997, 82(3): 1113–1128. doi: 10.1063/1.365878
|
[10] |
BOSLOUGH M B. A thermochemical model for shock-induced reactions (heat detonations) in solids [J]. Journal of Chemical Physics, 1990, 92(3): 1839–1848. doi: 10.1063/1.458066
|
[11] |
NIEH T G, LUO P, NELLIS W, et al. Dynamic compaction of aluminum nanocrystals [J]. Acta Materialia, 1996, 44(9): 3781–3788. doi: 10.1016/1359-6454(96)83816-X
|
[12] |
BENSON D J. An analysis by direct numerical simulation of the effects of particle morphology on the shock compaction of copper powder [J]. Modelling and Simulation in Materials Science and Engineering, 1994, 2: 535–550. doi: 10.1088/0965-0393/2/3A/008
|
[13] |
HORIE Y, YANO K. Nonequilibrium fluctutations in shock compression of polycrystalline α-Iron [C]//AIP Conference Proceedings, 2002:553–556.
|
[14] |
潘昊, 王升涛, 吴子辉, 等. 孪晶对Be材料冲击加-卸载动力学影响的数值模拟研究 [J]. 物理学报, 2018, 67(16): 164601. doi: 10.7498/aps.67.20180451
PAN H, WANG S T, WU Z H, et al. Effect of twining on dynamic behaviors of beryllium materials under impact loading and unloading [J]. Acta Physica Sinica, 2018, 67(16): 164601. doi: 10.7498/aps.67.20180451
|
[15] |
HAN P, AN X, ZHANG Y, et al. Particulate scale MPFEM modeling on compaction of Fe and Al composite powders [J]. Powder Technology, 2016, 314: 69–77.
|
[16] |
HUANG F, AN X, ZHANG Y, et al. Multi-particle FEM simulation of 2D compaction on binary Al/SiC composite powders [J]. Powder Technology, 2017, 314: 39–48. doi: 10.1016/j.powtec.2017.03.017
|
[17] |
ZHANG J. A study of compaction of composite particles by multi-particle finite element method [J]. Composites Science & Technology, 2009, 69(13): 2048–2053.
|
[18] |
HERRMANN W. Constitutive equation for the dynamic compaction of ductile porous materials [J]. Journal of Applied Physics, 1969, 40(6): 2490–2499. doi: 10.1063/1.1658021
|
[19] |
CARROLL M M, KIM K T, NESTERENKO V F. The effect of temperature on viscoplastic pore collapse [J]. Journal of Applied Physics, 1986, 59(6): 1962–1967. doi: 10.1063/1.336426
|
[20] |
JOHNSON J N. Dynamic fracture and spallation in ductile solids [J]. Journal of Applied Physics, 1981, 52(4): 2812–2825. doi: 10.1063/1.329011
|
[21] |
MOLINARI A, MERCIER S. Micromechanical modelling of porous materials under dynamic loading [J]. Journal of the Mechanics & Physics of Solids, 2001, 49(7): 1497–1516.
|
[22] |
ZAVALIANGOS A. A multiparticle simulation of powder compaction using finite element discretization of individual particles [J]. MRS Online Proceedings Library Archive, 2002: 731.
|
[23] |
ZHANG Y X, AN X Z, ZHANG Y L. Multi-particle FEM modeling on microscopic behavior of 2D particle compaction [J]. Applied Physics A, 2015, 118(3): 1015–1021. doi: 10.1007/s00339-014-8861-x
|
[24] |
XIN X J, JAYARAMAN P, JIANG G, et al. Explicit finite element method simulation of consolidation of monolithic and composite powders [J]. Metallurgical & Materials Transactions A, 2002, 33(8): 2649–2658.
|
[25] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9
|
[26] |
ABAQUS. Abaqus 6.11 analysis user’s manuals [M]. Rising Sun Mills, USA: Dassault Systmes, 2011.
|
[27] |
BOADE R R. Principal Hugoniot, second-shock Hugoniot, and release behavior of pressed copper powder [J]. Journal of Applied Physics, 1970, 41(11): 4542–4551. doi: 10.1063/1.1658494
|
[28] |
BENSON D J. The calculation of the shock velocity-particle velocity relationship for a copper powder by direct numerical simulation [J]. Wave Motion, 1995, 21(1): 85–99. doi: 10.1016/0165-2125(94)00044-6
|
[29] |
BORG J P, VOGLER T J. Aspects of simulating the dynamic compaction of a granular ceramic [J]. Modelling & Simulation in Materials Science & Engineering, 2009, 17(4): 045003.
|
[30] |
WANG L L. Foundations of stress waves [M]. Amsterdam: Elsevier Science Ltd., 2007.
|