Volume 33 Issue 5
Sep 2019
Turn off MathJax
Article Contents
GUO Lingmei, WANG Yang, XU Weifang. Experimental Investigation and Modeling of Strain-Rate Dependence on Tensile Behavior of Silicone Rubbers[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 054101. doi: 10.11858/gywlxb.20180664
Citation: GUO Lingmei, WANG Yang, XU Weifang. Experimental Investigation and Modeling of Strain-Rate Dependence on Tensile Behavior of Silicone Rubbers[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 054101. doi: 10.11858/gywlxb.20180664

Experimental Investigation and Modeling of Strain-Rate Dependence on Tensile Behavior of Silicone Rubbers

doi: 10.11858/gywlxb.20180664
  • Received Date: 18 Oct 2018
  • Rev Recd Date: 03 Jun 2019
  • Issue Publish Date: 25 Jul 2019
  • To investigate the impact tensile response of silicone rubber subjected to different strain rates, quasi-static uniaxial tension tests at the strain rate of 0.001 s–1, moderate strain-rate tensile tests at the strain rate of 15 s–1 and high strain-rate tensile tests at the strain rates of 350 and 1400 s–1 were performed. Experimental results show that the tensile behavior of the filled silicone rubber exhibits apparent nonlinear elastic characteristic and strain-rate sensitivity. A phenomenological visco-hyperelastic constitutive model was proposed based on the obtained responses. The model is composed of a hyper-elastic spring and a Maxwell element with rate-dependent relaxation time, corresponding to hyper-elasticity and viscoelasticity respectively. The model results have good agreement with the experimental data, indicating that the model has the ability to describe the nonlinear and rate-dependent tension behavior of the filled silicone rubber.

     

  • loading
  • [1]
    MEUNIER L, CHAGNON G, FAVIER D, et al. Mechanical experimental characterization and numerical modelling of an unfilled silicone rubber [J]. Polymer Testing, 2008, 27(6): 765–777. doi: 10.1016/j.polymertesting.2008.05.011
    [2]
    MACHADO G, CHAGNON G, FAVIER D. Induced anisotropy by the Mullins effect in filled silicone rubber [J]. Mechanics of Materials, 2012, 50: 70–80. doi: 10.1016/j.mechmat.2012.03.006
    [3]
    BENEVIDES R O, NUNES L C S. Mechanical behavior of the alumina-filled silicone rubber under pure shear at finite strain [J]. Mechanics of Materials, 2015, 85: 57–65. doi: 10.1016/j.mechmat.2015.02.011
    [4]
    胡时胜, 王正道, 赵立中. 泡沫硅橡胶动态力学性能的实验研究 [J]. 高分子材料科学与工程, 1999, 15(2): 113–115. doi: 10.3321/j.issn:1000-7555.1999.02.032

    HU S S, WANG Z D, ZHAO L Z. Experimental study of dynamic mechanical behaviors of silicone rubber foam [J]. Polymer Materials Science and Engineering, 1999, 15(2): 113–115. doi: 10.3321/j.issn:1000-7555.1999.02.032
    [5]
    赵习金, 卢芳云, 林玉亮. 硅橡胶的动态压缩实验和力学性能研究 [J]. 高压物理学报, 2004, 18(4): 328–332. doi: 10.3969/j.issn.1000-5773.2004.04.007

    ZHAO X J, LU F Y, LIN Y L. Research on dynamic compressive testing and mechanical properties of silicon rubber [J]. Chinese Journal of High Pressure Physics, 2004, 18(4): 328–332. doi: 10.3969/j.issn.1000-5773.2004.04.007
    [6]
    SHERGOLD O A, FLECK N A, RADFORD D. The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates [J]. International Journal of Impact Engineering, 2006, 32(9): 1384–1402. doi: 10.1016/j.ijimpeng.2004.11.010
    [7]
    TRELOAR L R G. The physics of rubber elasticity [M]. New York: Oxford University Press, 1975.
    [8]
    KILIAN H G, UNSELD K. Rubber elasticity and network structure [J]. Colloid and Polymer Science, 1986, 264(1): 9–18. doi: 10.1007/BF01410303
    [9]
    WU P D, GIESSEN E V D. On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers [J]. Journal of the Mechanics & Physics of Solids, 1993, 41(3): 427–456.
    [10]
    ARRUDA E M, BOYCE M C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials [J]. Journal of the Mechanics and Physics of Solids, 1993, 41(2): 389–412. doi: 10.1016/0022-5096(93)90013-6
    [11]
    OGDEN R W. On constitutive relations for elastic and plastic materials [D]. Cambridge: University of Cambridge, 1970.
    [12]
    RIVLIN R S. Large elastic deformations of isotropic materials IV: further developments of the general theory [J]. Philosophical Transactions of the Royal Society A: Mathematical Physical & Engineering Sciences, 1948, 241: 379–397.
    [13]
    ANAND L. On H. Hencky’s approximate strain-energy function for moderate deformations [J]. Journal of Applied Mechanics, 1979, 46(1): 78–82. doi: 10.1115/1.3424532
    [14]
    黄德进, 孙紫建, 王礼立. 高聚物材料动态本构关系对PP/PA共混物的应用研究 [J]. 材料工程, 2006(3): 3–5. doi: 10.3969/j.issn.1001-4381.2006.03.001

    HUANG D J, SUN Z J, WANG L L. Study on PP/PA blended material by polymer dynamic constitutive relation [J]. Journal of Materials Engineering, 2006(3): 3–5. doi: 10.3969/j.issn.1001-4381.2006.03.001
    [15]
    吕亚男, 郭玲梅, 邓志方, 等. 基于自动网格法的硅橡胶温度相关的拉伸力学行为 [J]. 高分子材料科学与工程, 2016, 32(2): 104–108.

    LÜ Y N, GUO L M, DENG Z F, et al. Temperature-dependent tensile behavior of silicon rubber using automated grid method [J]. Polymer Materials Science and Engineering, 2016, 32(2): 104–108.
    [16]
    郭玲梅, 吕亚男, 邓志方, 等. 硅橡胶动态拉伸力学性能的实验研究 [J]. 北京理工大学学报(自然科学版), 2016, 36(Suppl 1): 111–113, 130.

    GUO L M, LÜ Y N, DENG Z F, et al. Experimental study on dynamic tensile properties of silicone rubber [J]. Transactions of Beijing Institute of Technology, 2016, 36(Suppl 1): 111–113, 130.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views(7291) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return