Volume 33 Issue 5
Sep 2019
Turn off MathJax
Article Contents
CHEN Fang, LI Ping, LIU Kun, BAI Jingsong, LIN Jianyu, JI Lucheng. Interface Compression Technique in PPM[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 052302. doi: 10.11858/gywlxb.20180663
Citation: CHEN Fang, LI Ping, LIU Kun, BAI Jingsong, LIN Jianyu, JI Lucheng. Interface Compression Technique in PPM[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 052302. doi: 10.11858/gywlxb.20180663

Interface Compression Technique in PPM

doi: 10.11858/gywlxb.20180663
  • Received Date: 18 Oct 2018
  • Rev Recd Date: 16 Nov 2018
  • This paper describes an artificial interface compression technique for the multi-fluid piecewise parabolic method (PPM). The proposed approach enables the simulation of interfaces between compressible multi-fluid flows with high density ratios and strong shock waves. A compression source term incorporated both interface compression and density correction is added to the mass conservation equation. The compression source term is solved in pseudo-time steps using the interface compression technique and the advection part is solved by multi-fluid PPM. The Strang splitting algorithm achieves second-order accuracy by combining the solutions of the advection operator and the interface compression operator. Numerical tests on the interaction of shock waves with interfaces in compressible multi-fluid flows reveal that multi-fluid PPM combined with the artificial interface compression technique can effectively prevent the smearing phenomenon, which is often observed at the contact interface. For long-time simulations, artificial interface compression with interface sharpening can constrain the thickness of the diffused interface to a few cells and maintain the interface profile. This artificial interface compression technique works well with multi-fluid PPM and the effect is obvious. It is a significant step in the accurate simulation of the collapse of air cavities in water, which involves strong rarefaction waves.

     

  • loading
  • [1]
    MESHKOV E E. Instability of the interface of two gases accelerated by a shock wave [J]. Fluid Dynamics, 1969, 4(5): 101–104.
    [2]
    BROUILLETTE M. The Richtmyer-Meshkov Instability [J]. Annual Review of Fluid Mechanics, 2002, 34(34): 445–468.
    [3]
    LOMBARDINI M, PULLIN D I, MEIRON D I. Turbulent mixing driven by spherical implosions (Part 1): flow description and mixing-layer growth [J]. Journal of Fluid Mechanics, 2014, 748(2): 85–112.
    [4]
    LOMBARDINI M, PULLIN D I, MEIRON D I. Turbulent mixing driven by spherical implosions (Part 2): turbulence statistics [J]. Journal of Fluid Mechanics, 2014, 748(10): 113–142.
    [5]
    CLEMENS N T, MUNGAL M G. Large-scale structure and entrainment in the supersonic mixing layer [J]. Journal of Fluid Mechanics, 1995, 284(284): 171–216.
    [6]
    KAWAI S, LELE S K. Large-eddy simulation of jet mixing in supersonic crossflows [J]. American Institute of Aeronautics and Astronautics, 2010, 48(9): 2063–2083. doi: 10.2514/1.J050282
    [7]
    JOHNSEN E, COLONIUS T. Shock-induced collapse of a gas bubble in shockwave lithotripsy [J]. The Journal of the Acoustical Society of America, 2008, 124(4): 2011–2020. doi: 10.1121/1.2973229
    [8]
    KLASEBOER E, HUNG K C, WANG C, et al. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure [J]. Journal of Fluid Mechanics, 2005, 537(537): 387–413.
    [9]
    RANJAN D, OAKLEY J, BONAZZA R. 3D shock-bubble interactions [J]. Physics of Fluids, 2013, 25(9): 117–140.
    [10]
    THEOFANOUS T G. Aerobreakup of newtonian and viscoelastic liquids [J]. Annual Review of Fluid Mechanics, 2011, 43(1): 661–690. doi: 10.1146/annurev-fluid-122109-160638
    [11]
    COLELLA P, WOODWARD P R. The piecewise parabolic method (PPM) for gas-dynamical simulations [J]. Journal of Computational Physics, 1984, 54(1): 174–201. doi: 10.1016/0021-9991(84)90143-8
    [12]
    马东军, 孙德军, 尹协远. 高密度比多介质可压缩流动的PPM方法 [J]. 计算物理, 2001, 18(6): 517–522. doi: 10.3969/j.issn.1001-246X.2001.06.008

    MA D J, SUN D J, YIN X Y. Piecewise parabolic method for compressible flows of multifluids with high density ratios [J]. Chinese Journal of Computational Physics, 2001, 18(6): 517–522. doi: 10.3969/j.issn.1001-246X.2001.06.008
    [13]
    BAI J S, WANG B, WANG T, et al. Numerical simulation of the Richtmyer-Meshkov instability in initially nonuniform flows and mixing with reshock [J]. Physical Review E, 2012, 86(6): 066319. doi: 10.1103/PhysRevE.86.066319
    [14]
    BAI J S, ZOU L Y, WANG T, et al. Experimental and numerical study of shock-accelerated elliptic heavy gas cylinders [J]. Physical Review E, 2011, 82(2): 056318.
    [15]
    XIAO J X, BAI J S, WANG T. Numerical study of initial perturbation effects on Richtmyer-Meshkov instability in nonuniform flows [J]. Physical Review E, 2016, 94(1): 013112. doi: 10.1103/PhysRevE.94.013112
    [16]
    SHYUE K M. A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state [J]. Journal of Computational Physics, 1999, 156(1): 43–88. doi: 10.1006/jcph.1999.6349
    [17]
    SHYUE K M. An efficient shock-capturing algorithm for compressible multicomponent problems [J]. Journal of Computational Physics, 1998, 142(1): 208–242. doi: 10.1006/jcph.1998.5930
    [18]
    ALLAIRE G, CLERC S, KOKH S. A five-equation model for the simulation of interfaces between compressible fluids [J]. Journal of Computational Physics, 2002, 181(2): 577–616. doi: 10.1006/jcph.2002.7143
    [19]
    JOHNSEN E, COLONIUS T. Implementation of WENO schemes in compressible multicomponent flow problems [J]. Journal of Computational Physics, 2006, 219(2): 715–732. doi: 10.1016/j.jcp.2006.04.018
    [20]
    KOKH S, ALLAIRE G. Numerical simulation of 2-D two-phase flows with interface [C]//TORO E F. Godunov Methods.Boston, MA: Springer, 2001: 513–518.
    [21]
    II S, XIE B, XIAO F. An interface capturing method with a continuous function: the THINC method on unstructured triangular and tetrahedral meshes [J]. Journal of Computational Physics, 2014, 259: 260–269.
    [22]
    SHYUE K M, XIAO F. An Eulerian interface sharpening algorithm for compressible two-phase flow: the algebraic THINC approach [J]. Journal of Computational Physics, 2014, 268(2): 326–354.
    [23]
    XIAO F, HONMA Y, KONO T. A simple algebraic interface capturing scheme using hyperbolic tangent function [J]. International Journal for Numerical Methods in Fluids, 2005, 48(9): 1023–1040. doi: 10.1002/fld.975
    [24]
    XIAO F, II S, CHEN C. Revisit to the THINC scheme: a simple algebraic VOF algorithm [J]. Journal of Computational Physics, 2011, 230(19): 7086–7092. doi: 10.1016/j.jcp.2011.06.012
    [25]
    KOKH S, LAGOUTIÈRE F. An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model [J]. Journal of Computational Physics, 2010, 229(8): 2773–2809. doi: 10.1016/j.jcp.2009.12.003
    [26]
    FRIESS M B, KOKH S. Simulation of sharp interface multi-material flows involving an arbitrary number of components through an extended five-equation model [J]. Journal of Computational Physics, 2014, 273(273): 488–519.
    [27]
    DELIGANT M, SPECKLIN M, KHELLADI S. A naturally anti-diffusive compressible two phases Kapila model with boundedness preservation coupled to a high order finite volume solver [J]. Computers and Fluids, 2015, 114(1): 265–273.
    [28]
    OLSSON E, KREISS G, ZAHEDI S. A conservative level set method for two phase flow II [J]. Journal of Computational Physics, 2007, 225(1): 785–807. doi: 10.1016/j.jcp.2006.12.027
    [29]
    SHUKLA R K, PANTANO C, FREUND J B. An interface capturing method for the simulation of multi-phase compressible flows [J]. Journal of Computational Physics, 2010, 229(19): 7411–7439. doi: 10.1016/j.jcp.2010.06.025
    [30]
    SHUKLA R K. Nonlinear preconditioning for efficient and accurate interface capturing in simulation of multicomponent compressible flows [J]. Journal of Computational Physics, 2014, 276(1): 508–540.
    [31]
    FREUND J B, SHUKLA R K, EVAN A P. Shock-induced bubble jetting into a viscous fluid with application to tissue injury in shock-wave lithotripsy [J]. The Journal of the Acoustical Society of America, 2009, 126(5): 2746–2756. doi: 10.1121/1.3224830
    [32]
    SHU C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws [C]//QUARTERONI A. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations: Lecture Notes in Mathematics (Vol.1697). Berlin, Heidelberg: Springer, 1998: 325–432.
    [33]
    NOURGALIEV R R, DINH T N, THEOFANOUS T G. Adaptive characteristics-based matching for compressible multifluid dynamics [J]. Journal of Computational Physics, 2006, 213(2): 500–529. doi: 10.1016/j.jcp.2005.08.028
    [34]
    HU X Y, KHOO B C. An interface interaction method for compressible multifluids [J]. Journal of Computational Physics, 2004, 198(1): 35–64. doi: 10.1016/j.jcp.2003.12.018
    [35]
    SHYUE K M. A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions [J]. Journal of Computational Physics, 2006, 215(1): 219–244. doi: 10.1016/j.jcp.2005.10.030
    [36]
    HAAS J F, STURTEVANT B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities [J]. Journal of Fluid Mechanics, 1987, 181(1): 41–76.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views(10933) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return