Citation: | LI Zhouyi, HU Zhenbiao, WANG Haokang, SUO Tao. Mechanical Properties of CFRP Composites with CNT Film Interlayer under Different Strain Rates[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024205. doi: 10.11858/gywlxb.20180658 |
[1] |
HAO J W. Technology situation and development trends of advanced resin matrix composites [J]. Aeronautical Manufacturing Technology, 2001, 3(216): 22–25.
|
[2] |
PHAM S, BURCHILL P J. Toughening of vinyl ester resins with modified polybutadienes [J]. Polymer, 1995, 36(17): 3279–3285. doi: 10.1016/0032-3861(95)99426-U
|
[3] |
CARLSSON L A, AKSOY A. Analysis of interleaved end-notched flexure specimen for measuring mode II fracture toughness [J]. International Journal of Fracture, 1991, 52(1): 67–77. doi: 10.1007/BF00020258
|
[4] |
董慧民, 益小苏, 安学锋, 等. 纤维增强热固性聚合物基复合材料层间增韧研究进展 [J]. 复合材料学报, 2014, 31(2): 273–285
DONG H M, YI X S, AN X F, et al. Development of interleaved fibre-reinforced thermoset polymer matrix composites [J]. Acta Materiae Compositae Sinica, 2014, 31(2): 273–285
|
[5] |
IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(6348): 56–58. doi: 10.1038/354056a0
|
[6] |
CHOU T W, GAO L, THOSTENSON E T, et al. An assessment of the science and technology of carbon nanotube-based fibers and composites [J]. Composites Science and Technology, 2010, 70(1): 1–19. doi: 10.1016/j.compscitech.2009.10.004
|
[7] |
ASHRAFI B, GUAN J W, MIRJALILI V, et al. Comparison of chemical vapor deposition and chemical grafting for improving the mechanical properties of carbon fiber/epoxy composites with multi-wall carbon nanotubes [J]. Composites Science and Technology, 2011, 71: 1569–1578.
|
[8] |
ZENG Y, CI L, CAREY B J, et al. Design and reinforcement: vertically aligned carbon nanotube-based sandwich composites [J]. ACS Nano, 2010, 4(11): 6798–6804. doi: 10.1021/nn101650p
|
[9] |
ZHANG Z C, GU Y Z, WANG S K, et al. Enhanced dielectric and mechanical properties in chlorine-doped continuous CNT sheet reinforced sandwich polyvinylidene fluoride film [J]. Carbon, 2016, 107: 405–414. doi: 10.1016/j.carbon.2016.05.068
|
[10] |
Standard test method for determination of the mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D7905/D7905M-14 [S]. 2001.
|
[11] |
卢芳云, 陈荣, 林玉亮, 等. 霍普金森杆实验技术 [M]. 北京: 科学出版社, 2013: 30–31.
|
[12] |
DAELEMANS L, VAN DER HEIJDEN S, DE BAERE I, et al. Nanofibre bridging as a toughening mechanism in carbon/epoxy composite laminates interleaved with electrospun polyamide nanofibrous veils [J]. Composites Science and Technology, 2015, 117: 244–256. doi: 10.1016/j.compscitech.2015.06.021
|
[13] |
HAQUE A, ALI M. High strain rate responses and failure analysis in polymer matrix composites–an experimental and finite element study [J]. Journal of Composite Materials, 2005, 39(5): 423–450. doi: 10.1177/0021998305047094
|
[14] |
LI T, LI M, GU Y, et al. Mechanical enhancement effect of the interlayer hybrid CNT film/carbon fiber/epoxy composite [J]. Composites Science and Technology, 2018, 166: 176–182. doi: 10.1016/j.compscitech.2018.02.007
|
[15] |
CHEN X, LI Y, ZHI Z, et al. The compressive and tensile behavior of a 0/90 C fiber woven composite at high strain rates [J]. Carbon, 2013, 61: 97–104. doi: 10.1016/j.carbon.2013.04.073
|
[1] | YANG Dong, JIANG Ziwei, ZHENG Zhijun. Dynamic Behavior and Constitutive Relationship of Titanium Alloy Ti6Al4V under High Temperature and High Strain Rate[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 014101. doi: 10.11858/gywlxb.20230743 |
[2] | LIU Haoshan, ZHANG Zhiyu, HUANG Yonghui, CHEN Chengzhi, MENG Jiale. Analysis of Energy Characteristics and Failure Mode of Pegmatite Gabbro under Confining Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034103. doi: 10.11858/gywlxb.20220701 |
[3] | HUANG Shanxiu, CHEN Xiaoyang, ZHANG Chuanxiang, GUO Jiaqi. Mechanical Properties and Energy Evolution Characteristics of Concrete under Different Strain Rates and Content of MWCNTs[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014101. doi: 10.11858/gywlxb.20220654 |
[4] | YAN Jitao, CHEN Wenfei, ZHANG Hao, YOU Jian, SHI Chaoming, JIANG Haocheng, ZHU Jue. Dynamic Mechanical Behavior of G550 Cold-Formed Steel under High Temperature and High Strain Rate[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 024101. doi: 10.11858/gywlxb.20220705 |
[5] | QIU Yunxiao, HE Liling, CHEN Gang, WU Hao, LI Jicheng. Influence of Pressed Connection on Accelerometer Signal Adhesion between Target Layers[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 043401. doi: 10.11858/gywlxb.20220517 |
[6] | WANG Wenshuai, WANG Pengfei, TIAN Jie, XU Songlin. Penetration Mechanical Properties of Double-Layer Carbon Nanotube Films[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044105. doi: 10.11858/gywlxb.20220508 |
[7] | ZHANG Yanze, QIN Jian, MENG Xiangyao, LIU Yuankai, WEN Yanbo, HUANG Ruiyuan. Flow Stress Characteristics and Constitutive Model of ZL101A Aluminum Alloy under High Temperature and High Strain Rate[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 034105. doi: 10.11858/gywlxb.20210923 |
[8] | WEN Yanbo, HUANG Ruiyuan, LI Ping, MA Jian, XIAO Kaitao. Damage Evolution Equation of Concrete Materials at High Temperatures and High Strain Rates[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024103. doi: 10.11858/gywlxb.20200617 |
[9] | SHANG Bing, WANG Tongtong. Development of a Vertical Split Hopkinson Pressure Bar[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 043201. doi: 10.11858/gywlxb.20170658 |
[10] | ZHAO Shuai, ZHAO Jian-Xin, HAN Guo-Zhu. Strain Rate Effect and Energy Absorption Characteristics of Russian Pine[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 271-279. doi: 10.11858/gywlxb.2017.03.008 |
[11] | ZHAO Tie-Jun, YAN Hong-Hao, LI Xiao-Jie, WANG Yang. Detonation Modification of Multi-Walled Carbon Nanotubes[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 403-408. doi: 10.11858/gywlxb.2017.04.008 |
[12] | LUO Xin, XU Jin-Yu, LI Wei-Min, BAI Er-Lei. Numerical Analysis on the Coaxial Collision of Variable Section Bar and Application Prospect[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 715-720. doi: 10.11858/gywlxb.2012.06.018 |
[13] | ZHU Zhi-Wu, NING Jian-Guo, LIU Xu. Dynamic Mechanical Behaviors of Soil under Impact Loads[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 444-450 . doi: 10.11858/gywlxb.2011.05.010 |
[14] | XIAO Da-Wu, LI Ying-Lei, HU Shi-Sheng. Constitutive Model of Pure Zirconium under High Temperature and High Strain Rate[J]. Chinese Journal of High Pressure Physics, 2009, 23(1): 46-50 . doi: 10.11858/gywlxb.2009.01.008 |
[15] | LIN Yu-Liang, LU Fang-Yun, LU Li. Constitutive Behaviors of a Silicone Rubber at High Strain Rates[J]. Chinese Journal of High Pressure Physics, 2007, 21(3): 289-294 . doi: 10.11858/gywlxb.2007.03.012 |
[16] | QI Mei-Lan, HE Hong-Liang, WANG Yong-Gang, YAN Shi-Lin. Dynamic Analysis of Helium Bubble Growth in the Pure Al under High Strain-Rate Loading[J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 145-150 . doi: 10.11858/gywlxb.2007.02.005 |
[17] | CHEN Da-Nian, LIU Guo-Qing, YU Yu-Ying, WANG Huan-Ran, XIE Shu-Gang. The Constitutive Relationship between High Pressure-High Strain Rate and Low Pressure-High Strain Rate Experiment[J]. Chinese Journal of High Pressure Physics, 2005, 19(3): 193-200 . doi: 10.11858/gywlxb.2005.03.001 |
[18] | LIN Yu-Liang, LU Fang-Yun, LU Li. The Application of Quartz Transducer Technique in SHPB[J]. Chinese Journal of High Pressure Physics, 2005, 19(4): 299-304 . doi: 10.11858/gywlxb.2005.04.003 |
[19] | TANG Tie-Gang, HU Hai-Bo, LI Qing-Zhong, GU Yan, ZHANG Chong-Yu, WANG De-Sheng. Shear Fractures of LY12 Aluminum Cylinder under High-Strain-Rate Implosive Loading[J]. Chinese Journal of High Pressure Physics, 2003, 17(2): 129-134 . doi: 10.11858/gywlxb.2003.02.009 |
[20] | ZHUANG Shi-Ming, FENG Shu-Ping, WANG Chun-Yan, SUN Cheng-Wei. Dynamic Fracture of TC4 and TC9 Titanium Alloy under High Strain Rates[J]. Chinese Journal of High Pressure Physics, 1995, 9(2): 96-106 . doi: 10.11858/gywlxb.1995.02.003 |