Volume 33 Issue 2
Apr 2019
Turn off MathJax
Article Contents
LI Zhouyi, HU Zhenbiao, WANG Haokang, SUO Tao. Mechanical Properties of CFRP Composites with CNT Film Interlayer under Different Strain Rates[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024205. doi: 10.11858/gywlxb.20180658
Citation: LI Zhouyi, HU Zhenbiao, WANG Haokang, SUO Tao. Mechanical Properties of CFRP Composites with CNT Film Interlayer under Different Strain Rates[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024205. doi: 10.11858/gywlxb.20180658

Mechanical Properties of CFRP Composites with CNT Film Interlayer under Different Strain Rates

doi: 10.11858/gywlxb.20180658
  • Received Date: 15 Oct 2018
  • Rev Recd Date: 29 Nov 2018
  • Carbon nanotube film prepared by floating catalyst chemical vapor deposition (FCCVD) method was used as interlayer toughening material for carbon fiber reinforced laminated composites. The carbon nanotube film/carbon fiber/epoxy hybrid (CNTF/CF/EP) composites were prepared by hot pressing and cut into two dimensions respectively for compression and type II fracture toughness test. It has been observed that the type II fracture toughness is improved by 60% due to the carbon nanotube interlayers. Scanning electron microscope results suggest that the bridging of matrix cracks by carbon nanotubes leads to a higher type II fracture toughness. The results of compression experiments indicate that the compressive strength in both in-plane and out-of-plane directions is enhanced to some extent under quasi-static compression due to the carbon nanotube interlayers. Moreover, the enhancement in compressive strength which is as high as 9% out-of-plane direction can be achieved under high strain rates after modifying the interlayer structures with carbon nanotubes. However, there is no increase of compressive strength during dynamic compression in in-plane direction, and the fracture morphology shows that the primary reason is due to the internal delamination of the carbon nanotube films.

     

  • loading
  • [1]
    HAO J W. Technology situation and development trends of advanced resin matrix composites [J]. Aeronautical Manufacturing Technology, 2001, 3(216): 22–25.
    [2]
    PHAM S, BURCHILL P J. Toughening of vinyl ester resins with modified polybutadienes [J]. Polymer, 1995, 36(17): 3279–3285. doi: 10.1016/0032-3861(95)99426-U
    [3]
    CARLSSON L A, AKSOY A. Analysis of interleaved end-notched flexure specimen for measuring mode II fracture toughness [J]. International Journal of Fracture, 1991, 52(1): 67–77. doi: 10.1007/BF00020258
    [4]
    董慧民, 益小苏, 安学锋, 等. 纤维增强热固性聚合物基复合材料层间增韧研究进展 [J]. 复合材料学报, 2014, 31(2): 273–285

    DONG H M, YI X S, AN X F, et al. Development of interleaved fibre-reinforced thermoset polymer matrix composites [J]. Acta Materiae Compositae Sinica, 2014, 31(2): 273–285
    [5]
    IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(6348): 56–58. doi: 10.1038/354056a0
    [6]
    CHOU T W, GAO L, THOSTENSON E T, et al. An assessment of the science and technology of carbon nanotube-based fibers and composites [J]. Composites Science and Technology, 2010, 70(1): 1–19. doi: 10.1016/j.compscitech.2009.10.004
    [7]
    ASHRAFI B, GUAN J W, MIRJALILI V, et al. Comparison of chemical vapor deposition and chemical grafting for improving the mechanical properties of carbon fiber/epoxy composites with multi-wall carbon nanotubes [J]. Composites Science and Technology, 2011, 71: 1569–1578.
    [8]
    ZENG Y, CI L, CAREY B J, et al. Design and reinforcement: vertically aligned carbon nanotube-based sandwich composites [J]. ACS Nano, 2010, 4(11): 6798–6804. doi: 10.1021/nn101650p
    [9]
    ZHANG Z C, GU Y Z, WANG S K, et al. Enhanced dielectric and mechanical properties in chlorine-doped continuous CNT sheet reinforced sandwich polyvinylidene fluoride film [J]. Carbon, 2016, 107: 405–414. doi: 10.1016/j.carbon.2016.05.068
    [10]
    Standard test method for determination of the mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D7905/D7905M-14 [S]. 2001.
    [11]
    卢芳云, 陈荣, 林玉亮, 等. 霍普金森杆实验技术 [M]. 北京: 科学出版社, 2013: 30–31.
    [12]
    DAELEMANS L, VAN DER HEIJDEN S, DE BAERE I, et al. Nanofibre bridging as a toughening mechanism in carbon/epoxy composite laminates interleaved with electrospun polyamide nanofibrous veils [J]. Composites Science and Technology, 2015, 117: 244–256. doi: 10.1016/j.compscitech.2015.06.021
    [13]
    HAQUE A, ALI M. High strain rate responses and failure analysis in polymer matrix composites–an experimental and finite element study [J]. Journal of Composite Materials, 2005, 39(5): 423–450. doi: 10.1177/0021998305047094
    [14]
    LI T, LI M, GU Y, et al. Mechanical enhancement effect of the interlayer hybrid CNT film/carbon fiber/epoxy composite [J]. Composites Science and Technology, 2018, 166: 176–182. doi: 10.1016/j.compscitech.2018.02.007
    [15]
    CHEN X, LI Y, ZHI Z, et al. The compressive and tensile behavior of a 0/90 C fiber woven composite at high strain rates [J]. Carbon, 2013, 61: 97–104. doi: 10.1016/j.carbon.2013.04.073
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views(8573) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return