Citation: | WU Qijian, ZHI Xudong. Strain Rate Effect of GFRP-Reinforced Circular Steel Tube under Low-Velocity Impact[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044203. doi: 10.11858/gywlxb.20180653 |
[1] |
岳清瑞, 杨勇新. 纤维增强复合材料加固结构耐久性研究综述 [J]. 建筑结构学报, 2009, 30(6): 8–15.
YUE Q R, YANG Y X. Introduction to durability of concrete strengthened with fiber reinforced polymers [J]. Journal of Building Structures, 2009, 30(6): 8–15.
|
[2] |
ZHI X D, WU Q J, WANG C. Experimental and numerical study of GFRP-reinforced steel tube under axial impact loads [J]. International Journal of Impact Engineering, 2018, 122: 23–37. doi: 10.1016/j.ijimpeng.2018.07.018
|
[3] |
BATUWITAGE C, FAWZIA S, THAMBIRATNAM D, et al. Impact behaviour of carbon fibre reinforced polymer (CFRP) strengthened square hollow steel tubes: a numerical simulation [J]. Thin-Walled Structures, 2018, 131: 245–257. doi: 10.1016/j.tws.2018.06.033
|
[4] |
ALAM M I, FAWZIA S. Numerical studies on CFRP strengthened steel columns under transverse impact [J]. Composite Structures, 2015, 120: 428–441. doi: 10.1016/j.compstruct.2014.10.022
|
[5] |
李洋, 王俊, 刘伟庆. 纤维复合材料-钢组合柱侧向冲击试验和有限元仿真分析 [J]. 钢结构, 2017, 32(2): 21–26.
LI Y, WANG J, LIU W Q. Experimental study and FE simulation of the anti-impact performance of GFRP-steel column subjected to transverse impact [J]. Steel Construction, 2017, 32(2): 21–26.
|
[6] |
KADHIM M M A, WU Z J, LEE S C. Loading rate effects on CFRP strengthened steel square hollow sections under lateral impact [J]. Engineering Structures, 2018, 171: 874–882. doi: 10.1016/j.engstruct.2018.04.066
|
[7] |
KADHIM M M A, WU Z J, LEE S C. Experimental study of CFRP strengthened steel columns subject to lateral impact loads [J]. Composite Structures, 2018, 185: 94–104. doi: 10.1016/j.compstruct.2017.10.089
|
[8] |
JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large Strains, high strain rates and high temperatures [C]//Proceedings of the Seventh International Symposium on Ballistics. The Hague, Netherlands, 1983: 1–7.
|
[9] |
ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987, 61(5): 1816–1825. doi: 10.1063/1.338024
|
[10] |
LIN L, FAN F, ZHI X D. Dynamic constitutive relation and fracture model of Q235A steel [J]. Applied Mechanics and Materials, 2013, 274: 463–466. doi: 10.4028/www.scientific.net/AMM.274
|
[11] |
ZHANG D N, SHANGGUAN Q Q, XIE C J, et al. A modified Johnson-Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy [J]. Journal of Alloys and Compounds, 2015, 619: 186–194. doi: 10.1016/j.jallcom.2014.09.002
|
[12] |
TAN J Q, ZHAN M, LIU S, et al. A modified Johnson-Cook model for tensile flow behaviors of 7050-T7451 aluminum alloy at high strain rates [J]. Materials Science and Engineering:A, 2015, 631: 214–219. doi: 10.1016/j.msea.2015.02.010
|
[13] |
HASHIN Z. Failure criterion for unidirectional fiber composite [J]. Journal of Applied Mechanics, 1980, 47: 329–334. doi: 10.1115/1.3153664
|
[14] |
PUCK A, SCHURMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models [J]. Composites Science and Technology, 2001, 62: 1633–1662.
|
[15] |
SINGH H, NAMALA K K, MAHAJAN P. A damage evolution study of E-glass/epoxy composite under low velocity impact [J]. Composites Part B: Engineering, 2015, 76: 235–248. doi: 10.1016/j.compositesb.2015.02.016
|
[16] |
LIAO B B, LIU P F. Finite element analysis of dynamic progressive failure of plastic composite laminates under low velocity impact [J]. Composite Structures, 2017, 159: 567–578. doi: 10.1016/j.compstruct.2016.09.099
|
[17] |
Dassault Systèmes Simulia Corp. ABAQUS 6.11 user’s manual [Z]. Providence, RI: Dassault Systèmes Simulia Corp, 2011.
|
[18] |
SHOKRIEH M M, KARAMNEJAD A. Investigation of strain rate effects on the dynamic response of a glass/epoxy composite plate under blast loading by using the finite difference method [J]. Mechanics of Composite Materials, 2014, 50(3): 295–310. doi: 10.1007/s11029-014-9415-1
|