Citation: | LI Kebin, LI Xiaojie, WANG Xiaohong, YAN Honghao, CAO Jingxiang. A Modified Aquarium Test Using a Continuous Pressure-Conducted Velocity Probe for Measurement of Detonation Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 023201. doi: 10.11858/gywlxb.20180652 |
[1] |
SONG S Y, LEE J W. A detonation pressure measurement system employing high resistance manganin foil gauge [C]// Proceedings of the 9th Symposium (International) on Detonation. Portland, OR, 1989: 471–477.
|
[2] |
PHILIPPART D. The study of booster materials with electromagnetic particle velocity gauges [C]//Proceedings of 8th Symposium (International) on Detonation, NSWC MP, 1985: 86–194.
|
[3] |
DOROKHIN V V, ZUBAREVYU V N, OREKIN K, et al. Continuous radiographic recording for explosion products behind a detonation front [J]. Combustion, Explosion and Shock Waves, 1988, 24(1): 109–112. doi: 10.1007/BF00749084
|
[4] |
MADER C L, CRANE S L, JOHNSON J N. Los Alamos explosives performance data [M]. Los Angeles: University of California Press, 1983.
|
[5] |
COOK M A, KEYES R T, URSENBACH W O. Measurements of detonation pressure [J]. Journal of Applied Physics, 1962, 33(12): 3413–3421. doi: 10.1063/1.1702422
|
[6] |
RIGDON J K, AKST I B. An analysis of the " Aquarium technique” as a precision detonation pressure measurement gage [C]// Proceedings of the Fifth Symposium (International) on Detonation, 1970.
|
[7] |
徐康, 于德洋, 许云祥, 等. 水箱法——一种可用于小药量测定炸药爆轰压力的方法 [J]. 爆炸与冲击, 1981, 1(2): 89–95
XU K, YU D Y, XU Y X, et al. Aquarium test–a method for determination of the detonation pressure with small quantity of explosive [J]. Explosion and Shock waves, 1981, 1(2): 89–95
|
[8] |
薛彭寿, 王淑萍. 大药量水箱法测定炸药爆轰压力的研究 [J]. 火炸药, 1992(2): 10–19
XUE P S, WANG S P. Study on detonation pressure measurement for large charge with aquarium test [J]. Chinese Journal of Explosives & Propellants, 1992(2): 10–19
|
[9] |
ASHAEV V K, DORONIN G S, LEVIN A D. Detonation front structure in condensed high explosives [J]. Combustion, Explosion and Shock Waves, 1988, 24(1): 88–92. doi: 10.1007/BF00749080
|
[10] |
于德洋, 曾雄飞, 徐康. 阻抗匹配法测爆压的研究 [J]. 爆炸与冲击, 1983, 3(3): 67–74
YU D Y, ZENG X F, XU K. Impedance matching method for detonation pressure measurements [J]. Explosion and Shock Waves, 1983, 3(3): 67–74
|
[11] |
于德洋, 曾雄飞, 徐康. 对一种新的爆压测试方法—二碘甲烷法—的研究 [J]. 爆炸与冲击, 1985, 5(2): 69–73
YU D Y, ZENG X F, XU K. Investigations of a new detonation pressure measuring method-diiodomethane method [J]. Explosion and Shock Waves, 1985, 5(2): 69–73
|
[12] |
李晓杰, 王小红, 闫鸿浩, 等. 一种连续电阻丝探针及其制造方法: CN 103630704A [P]. 2014-03-12.
|
[13] |
李科斌, 李晓杰, 闫鸿浩, 等. 炸药爆速连续测量的杂波分析及新型探针的研制 [J]. 工程爆破, 2017, 23(5): 85–90 doi: 10.3969/j.issn.1006-7051.2017.05.017
LI K B, LI X J, YAN H H, et al. The mechanism analysis of noise wave in detonation velocity continuous measurement [J]. Engineering Blasting, 2017, 23(5): 85–90 doi: 10.3969/j.issn.1006-7051.2017.05.017
|
[14] |
王宇新, 李晓杰, 闫鸿浩, 等. 炸药爆速的连续测量技术研究 [J]. 爆破器材, 2017, 46(6): 59–64 doi: 10.3969/j.issn.1001-8352.2017.06.012
WANG Y X, LI X J, YAN H H, et al. Study on continuous testing technology of detonation velocity of explosives [J]. Explosive Materials, 2017, 46(6): 59–64 doi: 10.3969/j.issn.1001-8352.2017.06.012
|
[15] |
李科斌, 李晓杰, 闫鸿浩, 等. 一种测量工业炸药临界直径和临界厚度的连续电阻丝探针法 [J]. 含能材料, 2018, 26(7): 620–625
LI K B, LI X J, YAN H H, et al. A continuous resistance wire probe method for determining the critical diameter and thickness of commercial explosives [J]. Chinese Journal of Energetic Materials, 2018, 26(7): 620–625
|
[16] |
李科斌, 李晓杰, 闫鸿浩, 等. 一种可实现水下爆炸参数连续测量的新型电测方法 [J]. 兵工学报, 2017(Suppl 1): 108–112
LI K B, LI X J, YAN H H, et al. New electrometric method for the continuous measurement of underwater explosion parameters [J]. Acta Armamentarii, 2017(Suppl 1): 108–112
|
[17] |
RICE M H, WALSH J M. Equation of state of water to 250 kilobars [J]. The Journal of Chemical Physics, 1957, 26(4): 824–830. doi: 10.1063/1.1743415
|
[18] |
MARSH S P. LASL shock Hugoniot data [M]. Berkeley: University of California Press, 1980.
|
[1] | XIE Guilan, SONG Muqing, GONG Shuguang, HOU Kun, ZUO Lilai, XIAO Fangyu. Numerical Simulation of Projectile Penetrating Double-Layer Plate Liquid-Filled Structure Based on Material Point Method[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 015101. doi: 10.11858/gywlxb.20220602 |
[2] | JI Yao, XU Shuangxi, CHEN Wei, LE Jingxia, LI Xiaobin, LI Ying. Numerical Simulation of Anti-Penetration of Al/CFRP/Hybrid Honeycomb Aluminum Composite Sandwich Multilayer Structure[J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014201. doi: 10.11858/gywlxb.20220657 |
[3] | WANG Guilin, HE Chenhao, OUYANG Xiaotian, ZHAI Jun, CHEN Xiangyu. Response Law of Subway Platform and Surrounding Rock under Solid Explosion[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 035201. doi: 10.11858/gywlxb.20210874 |
[4] | ZHU Wenrui, WU Xingxing, LIU Jianhu, WANG Jun, ZHAO Yanjie, LI Tianran. Failure of Square Plate under the Influence of Boundary Conditions Subjected to Shock Loading[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 014202. doi: 10.11858/gywlxb.20200565 |
[5] | XU Rui, ZHI Xiaoqi, FAN Xinghua. Energy Consumption of Composite Double-Layer Targets against Spherical Fragment Penetration[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065103. doi: 10.11858/gywlxb.20200551 |
[6] | ZHOU Zhongbin, MA Tian, ZHAO Yonggang, LI Jidong, ZHOU Tao, LI Peng. Comparative Experiment on Structural Damage of Supersonic Projectiles with Different Metal Materials Penetrating into Reinforced Concrete Targets[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 025101. doi: 10.11858/gywlxb.20190841 |
[7] | WU Pulei, LI Pengfei, YANG Lei, ZHAO Xiangjun, SONG Pu. Influence of Aspect Ratio on the Penetration Resistance[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 025105. doi: 10.11858/gywlxb.20170631 |
[8] | CAO Ming-Yang, WANG Jin-Xiang, HAO Chun-Jie, SONG Hai-Ping, ZHANG Ya-Ning, ZHOU Lian, ZHOU Nan, TANG Kui. Formation and Penetration Performane of Multi-Explosviely Formed Projectiles[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 486-493. doi: 10.11858/gywlxb.2017.04.018 |
[9] | HAN Jing, WANG Hua, CHEN Zhi-Gang. Penetrating and Damaging Effects of a Split Kinetic EnergyProjectile on Concrete Targets[J]. Chinese Journal of High Pressure Physics, 2016, 30(5): 399-405. doi: 10.11858/gywlxb.2016.05.009 |
[10] | WANG Ke-Hui, GENG Bao-Gang, CHU Zhe, ZHOU Gang, LI Ming, GU Ren-Hong, NING Jian-Guo. Experimental Studies on Structural Response and Mass Loss of High-Velocity Projectiles Penetrating into Reinforced Concrete Targets[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 61-68. doi: 10.11858/gywlxb.2014.01.010 |
[11] | YU Chuan, WANG Wei, CHEN Hao, YU De-Shui, XIE Gang, ZHANG Zhen-Tao. Design of Explosively Formed Projectile Liner with Small Radius and Experiment of Penetrating Multi-Layer Steel Target[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 69-72. doi: 10.11858/gywlxb.2014.01.011 |
[12] | WANG Ying-Chun, WANG Jie, DU An-Li, NIU Tian-Lin. Research of Damage Indexes of KE-Rod Penetration on Target[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 197-201. doi: 10.11858/gywlxb.2014.02.010 |
[13] | FAN Fei, LI Wei-Bing, WANG Xiao-Ming, LI Wen-Bin, HAN Yu. Research on the Damaging Ability of EFP Warhead at Different Incidence Angle[J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 199-204. doi: 10.11858/gywlxb.2012.02.012 |
[14] | ZHANG Xu, CAO Ren-Yi, TAN Duo-Wang. A Dynamic Friction Analysis Method of Charge Survivability during Supersonic Penetration of Concrete Targets[J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 63-68. doi: 10.11858/gywlxb.2012.01.009 |
[15] | JI Chong, LONG Yuan, YU Dao-Qiang, ZHOU Xiang, ZHANG Yang-Yi. Experimental and Numerical Study on the Formation and Penetration Properties of Dual-Mode Warhead[J]. Chinese Journal of High Pressure Physics, 2012, 26(5): 508-516. doi: 10.11858/gywlxb.2012.05.005 |
[16] | CHEN Zhi-Hua, FAN Bao-Chun, LI Hong-Zhi. Investigations on Combustion and Explosion Process of Suspended Aluminum Particles in a Large Combustion Tube[J]. Chinese Journal of High Pressure Physics, 2006, 20(2): 157-162 . doi: 10.11858/gywlxb.2006.02.008 |
[17] | YANG Jun, JIANG Jian-Wei, MEN Jian-Bing. Numerical Simulation for Formation Flight and Penetration of Sphericity EFP[J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 429-433 . doi: 10.11858/gywlxb.2006.04.015 |
[18] | WANG Zheng, NI Yu-Shan, CAO Ju-Zhen, ZHANG Wen, JIN Wu-Gen. Application of the Velocity Potential Model to Penetration Study[J]. Chinese Journal of High Pressure Physics, 2005, 19(1): 10-16 . doi: 10.11858/gywlxb.2005.01.003 |
[19] | WANG Ke-Hui, CHU Zhe, ZHOU Gang, WANG Jin-Hai, ZHU Yu-Rong, MIN Tao, HAN Juan-Ni. Numerical Simulation and Experimental Study of Penetrator with Composite Structure Impacting Concrete Targets[J]. Chinese Journal of High Pressure Physics, 2005, 19(1): 93-96 . doi: 10.11858/gywlxb.2005.01.016 |
[20] | TAN Duo-Wang, XIE Pan-Hai. Experimental Studies of Alumina Ceramic against a Shaped-Charge Jet Penetration[J]. Chinese Journal of High Pressure Physics, 1997, 11(2): 145-149 . doi: 10.11858/gywlxb.1997.02.012 |