Volume 33 Issue 1
Jan 2019
Turn off MathJax
Article Contents
HUANG Yingying, SU Yan, ZHAO Jijun. Ultralow-Density Clathrate Ices and Phase Diagram under Negative Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 010001. doi: 10.11858/gywlxb.20180643
Citation: HUANG Yingying, SU Yan, ZHAO Jijun. Ultralow-Density Clathrate Ices and Phase Diagram under Negative Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 010001. doi: 10.11858/gywlxb.20180643

Ultralow-Density Clathrate Ices and Phase Diagram under Negative Pressure

doi: 10.11858/gywlxb.20180643
  • Received Date: 25 Sep 2018
  • Rev Recd Date: 29 Oct 2018
  • Water is not only omnipresent on the Earth but also ubiquitous in the solar system such as on comets, asteroids, or icy moons of the giant planets. Hence, exploration of different forms of ice in different environment has significant implication to physical science, chemical science, bioscience, geoscience and planetary science. Depending on the surrounding conditions of pressure and temperature, water ice exhibits an exceptionally rich and complicated phase diagram. To date, at least eighteen crystalline ice phases (ice Ih, Ic, ice II to ice XVII) have been identified under laboratory conditions. In addition, there are many hypothetical ultralow-density ice phases from clathrate hydrates, such as structure I (s-I), structure II (s-II), structure H (s-H), structure K (s-K) and structure T (s-T) ices. Recently, the s-II clathrate ice (ice XVI) produced in the laboratory emerges in the negative pressure part of phase diagram, which stimulates greatly people to explore the other low-density clathrate ices. Using extensive Monte Carlo packing algorithm, classical molecular dynamins simulations, and dispersion-corrected density functional theory optimization, we predict two cubic clathrate ices with ultralow densities, and name them as s-III (ρ=0.593 g/cm3) and s-IV (ρ=0.506 g/cm3) clathrate ices. The unit cell of s-III clathrate ice is composed of two large icosihexahedral cavities (8668412) and six small decahedral cavities (8248), while the unit cell of s-IV clathrate ice is constructed by eight large icosihexahedral cavities (12464418), eight intermediate dodecahedral cavities (6646), and six small octahedral cavities (6246). For these two clathrate ices, the large-sized icosihexahedral cavities and the unique packed patterns among different cavities result in their record low densities. Considering all the low-density (lower than ice XI or equal to ice XI) ices, we construct a new p-T (pressure-temperature) phase diagram of water with TIP4P/2005 model potential under negative pressures. Below the deeply negative-pressure region of s-II clathrate ice, s-III and s-IV clathrate ices replace s-H clathrate ice, arising as the most stable ice phases in the high-temperature part and the low-temperature part, respectively. As a result, a triple point (T = 115 K, p = –488.2 MPa) appears in the phase diagram. The density functional theory calculations suggest that the s-III and s-IV clathrate ices can be fully stabilized by encapsulating an appropriate guest molecule such as dodecahedrane molecule (C 20H20) and fullerene molecule (C60) in the large cavity, respectively. Considering that the guest-free s-II clathrate ice has been produced in the laboratory, which is also recognized as ice XVI, both the s-III and s-IV clathrate ices can be viewed as potential candidates of ice XVIII or ice XIX. Computations show that the hydrogen storage capacities of s-III ice clathrate amount to nearly twice of those for the s-II ice clathrate at low temperature and room temperature, which satisfies the DOE ultimate target for on-board hydrogen storage.

     

  • loading
  • [1]
    SALZMANN C G, RADAELLI P G, SLATER B, et al. The polymorphism of ice: five unresolved questions [J]. Physical Chemistry Chemical Physics, 2011, 13(41): 18468–18480. doi: 10.1039/c1cp21712g
    [2]
    BARTELS-RAUSCH T, BERGERON V, CARTWRIGHT J H E, et al. Ice structures, patterns, and processes: a view across the icefields [J]. Reviews of Modern Physics, 2012, 84(2): 885–944. doi: 10.1103/RevModPhys.84.885
    [3]
    KUHS W F, LEHMANN M S. The structure of the ice Ih by neutron diffraction [J]. The Journal of Physical Chemistry, 1983, 87(21): 4312–4313. doi: 10.1021/j100244a063
    [4]
    ANDERSSON O, SUGA H. Thermal conductivity of amorphous ices [J]. Physical Review B, 2002, 65(14): 140201. doi: 10.1103/PhysRevB.65.140201
    [5]
    HANSEN T C, FALENTY A, KUHS W F. Modelling ice Ic of different origin and stacking-faulted hexagonal ice using neutron powder diffraction data [J]. Special Publication-Royal Society of Chemistry, 2006, 311: 201.
    [6]
    MURRAY B J, BERTRAM A K. Formation and stability of cubic ice in water droplets [J]. Physical Chemistry Chemical Physics, 2006, 8(1): 186–192. doi: 10.1039/B513480C
    [7]
    MALKIN T L, MURRAY B J, BRUKHNO A V, et al. Structure of ice crystallized from supercooled water [J]. Proceedings of the National Academy of Sciences, 2012, 109(4): 1041–1045. doi: 10.1073/pnas.1113059109
    [8]
    KAMB B. Ice II. a proton-ordered form of ice [J]. Acta Crystallographica, 1964, 17(11): 1437–1449. doi: 10.1107/S0365110X64003553
    [9]
    FORTES A D, WOOD I G, ALFREDSSON M, et al. The incompressibility and thermal expansivity of D2O ice II determined by powder neutron diffraction [J]. Journal of Applied Crystallography, 2005, 38(4): 612–618. doi: 10.1107/S0021889805014226
    [10]
    LONDONO J D, KUHS W F, FINNEY J L. Neutron diffraction studies of ices III and IX on under-pressure and recovered samples [J]. The Journal of Chemical Physics, 1993, 98(6): 4878–4888. doi: 10.1063/1.464942
    [11]
    ENGELHARDT H, KAMB B. Structure of ice IV, a metastable high-pressure phase [J]. The Journal of Chemical Physics, 1981, 75(12): 5887–5899. doi: 10.1063/1.442040
    [12]
    KAMB B, PRAKASH A, KNOBLER C. Structure of ice V [J]. Acta Crystallographica, 1967, 22(5): 706–715. doi: 10.1107/S0365110X67001409
    [13]
    KUHS W F, FINNEY J L, VETTIER C, et al. Structure and hydrogen ordering in ices VI, VII, and VIII by neutron powder diffraction [J]. The Journal of Chemical Physics, 1984, 81(8): 3612–3623. doi: 10.1063/1.448109
    [14]
    JORGENSEN J D, WORLTON T G. Disordered structure of D2O ice VII from in situ neutron powder diffraction [J]. The Journal of Chemical Physics, 1985, 83(1): 329–333. doi: 10.1063/1.449867
    [15]
    BESSON J M, PRUZAN P, KLOTZ S, et al. Variation of interatomic distances in ice VIII to 10 GPa [J]. Physical Review B, 1994, 49(18): 12540–12550. doi: 10.1103/PhysRevB.49.12540
    [16]
    HEMLEY R J, JEPHCOAT A P, MAO H K, et al. Static compression of H2O-ice to 128 GPa (1.28 Mbar) [J]. Nature, 1987, 330(6150): 737–740. doi: 10.1038/330737a0
    [17]
    LEADBETTER A J, WARD R C, CLARK J W, et al. The equilibrium low-temperature structure of ice [J]. The Journal of Chemical Physics, 1985, 82(1): 424–428. doi: 10.1063/1.448763
    [18]
    SALZMANN C G, KOHL I, LOERTING T, et al. Pure ices IV and XII from high-density amorphous ice [J]. Canadian Journal of Physics, 2003, 81(1): 25–32.
    [19]
    KOZA M, SCHOBER H, T LLE A, et al. Formation of ice XII at different conditions [J]. Nature, 1999, 397(6721): 660–661.
    [20]
    SALZMANN C G, RADAELLI P G, HALLBRUCKER A, et al. The preparation and structures of hydrogen ordered phases of ice [J]. Science, 2006, 311(5768): 1758–1761. doi: 10.1126/science.1123896
    [21]
    SALZMANN C G, RADAELLI P G, MAYER E, et al. Ice XⅤ: a new thermodynamically stable phase of ice [J]. Physical Review Letters, 2009, 103(10): 105701. doi: 10.1103/PhysRevLett.103.105701
    [22]
    FALENTY A, HANSEN T C, KUHS W F. Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate [J]. Nature, 2014, 516(7530): 231–233. doi: 10.1038/nature14014
    [23]
    DEL ROSSO L, CELLI M, ULIVI L. New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice [J]. Nature Communications, 2016, 7: 13394. doi: 10.1038/ncomms13394
    [24]
    RUSSO J, ROMANO F, TANAKA H. New metastable form of ice and its role in the homogeneous crystallization of water [J]. Nature Materials, 2014, 13(7): 733–739. doi: 10.1038/nmat3977
    [25]
    KOSYAKOV V I, SHESTAKOV V A. On the possibility of the existence of a new ice phase under negative pressures [J]. Doklady Physical Chemistry, 2001, 376(4): 49–51.
    [26]
    CONDE M M, VEGA C, TRIBELLO G A, et al. The phase diagram of water at negative pressures: virtual ices [J]. The Journal of Chemical Physics, 2009, 131(3): 034510. doi: 10.1063/1.3182727
    [27]
    HUANG Y, ZHU C, WANG L, et al. A new phase diagram of water under negative pressure: the rise of the lowest-density clathrate s-III [J]. Science Advances, 2016, 2(2): e1501010. doi: 10.1126/sciadv.1501010
    [28]
    HUANG Y, ZHU C, WANG L, et al. Prediction of a new ice clathrate with record low density: a potential candidate as ice XIX in guest-free form [J]. Chemical Physics Letters, 2017, 671: 186–191. doi: 10.1016/j.cplett.2017.01.035
    [29]
    MCMAHON J M. Ground-state structures of ice at high pressures from ab initio random structure searching [J]. Physical Review B, 2011, 84(22): 220104. doi: 10.1103/PhysRevB.84.220104
    [30]
    JI M, UMEMOTO K, WANG C-Z, et al. Ultrahigh-pressure phases of H2O ice predicted using an adaptive genetic algorithm [J]. Physical Review B, 2011, 84(22): 220105. doi: 10.1103/PhysRevB.84.220105
    [31]
    WANG Y, LIU H, LV J, et al. High pressure partially ionic phase of water ice [J]. Nature Communications, 2011, 2: 563. doi: 10.1038/ncomms1566
    [32]
    MILITZER B, WILSON H F. New phases of water ice predicted at megabar pressures [J]. Physical Review Letters, 2010, 105(19): 195701. doi: 10.1103/PhysRevLett.105.195701
    [33]
    STROBEL T A, SOMAYAZULU M, SINOGEIKIN S V, et al. Hydrogen-stuffed, quartz-like water ice [J]. Journal of the American Chemical Society, 2016, 138(42): 13786–13789. doi: 10.1021/jacs.6b06986
    [34]
    DEL ROSSO L, GRAZZI F, CELLI M, et al. Refined structure of metastable ice XVII from neutron diffraction measurements [J]. The Journal of Physical Chemistry C, 2016, 120(47): 26955–26959. doi: 10.1021/acs.jpcc.6b10569
    [35]
    FENNELL C J, GEZELTER J D. Computational free energy studies of a new ice polymorph which exhibits greater stability than ice Ih [J]. Journal of Chemical Theory and Computation, 2005, 1(4): 662–667. doi: 10.1021/ct050005s
    [36]
    CHOU I-M, SHARMA A, BURRUSS R C, et al. Transformations in methane hydrates [J]. Proceedings of the National Academy of Sciences, 2000, 97(25): 13484–13487. doi: 10.1073/pnas.250466497
    [37]
    VATAMANU J, KUSALIK P G. Unusual crystalline and polycrystalline structures in methane hydrates [J]. Journal of the American Chemical Society, 2006, 128(49): 15588–15589. doi: 10.1021/ja066515t
    [38]
    KURNOSOV A, MANAKOV A, YU. KOMAROV V, et al. A new gas hydrate structure [J]. Doklady Physical Chemistry, 2001, 381(5): 303–305.
    [39]
    IMRE A R. On the existence of negative pressure states [J]. Physica Status Solidi (B), 2007, 244(3): 893–899. doi: 10.1002/(ISSN)1521-3951
    [40]
    HERBERT E, BALIBAR S, CAUPIN F. Cavitation pressure in water [J]. Physical Review E, 2006, 74(4): 041603.
    [41]
    DAVITT K, ROLLEY E, CAUPIN F, et al. Equation of state of water under negative pressure [J]. The Journal of Chemical Physics, 2010, 133(17): 174507. doi: 10.1063/1.3495971
    [42]
    AZOUZI M E M, RAMBOZ C, LENAIN J-F, et al. A coherent picture of water at extreme negative pressure [J]. Nature Physics, 2012, 9(1): 38.
    [43]
    ZHENG Q, DURBEN D J, WOLF G H, et al. Liquids at large negative pressures: water at the homogeneous nucleation limit [J]. Science, 1991, 254(5033): 829–832. doi: 10.1126/science.254.5033.829
    [44]
    YANG S H, NOSONOVSKY M, ZHANG H, et al. Nanoscale water capillary bridges under deeply negative pressure [J]. Chemical Physics Letters, 2008, 451(1): 88–92.
    [45]
    JACOBSON L C, HUJO W, MOLINERO V. Thermodynamic stability and growth of guest-free clathrate hydrates: a low-density crystal phase of water [J]. The Journal of Physical Chemistry B, 2009, 113(30): 10298–10307. doi: 10.1021/jp903439a
    [46]
    VOS W L, FINGER L W, HEMLEY R J, et al. Novel H2-H2O clathrates at high pressures [J]. Physical Review Letters, 1993, 71(19): 3150–3153. doi: 10.1103/PhysRevLett.71.3150
    [47]
    DYADIN Y A, LARIONOV E G, MANAKOV A Y, et al. Clathrate hydrates of hydrogen and neon [J]. Mendeleev Communications, 1999, 9(5): 209–210. doi: 10.1070/MC1999v009n05ABEH001104
    [48]
    MAO W L, MAO H-K, GONCHAROV A F, et al. Hydrogen clusters in clathrate hydrate [J]. Science, 2002, 297(5590): 2247–2249. doi: 10.1126/science.1075394
    [49]
    MAO W L, MAO H-K. Hydrogen storage in molecular compounds [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(3): 708–710. doi: 10.1073/pnas.0307449100
    [50]
    LOKSHIN K A, ZHAO Y. Fast synthesis method and phase diagram of hydrogen clathrate hydrate [J]. Applied Physics Letters, 2006, 88(13): 131909. doi: 10.1063/1.2190273
    [51]
    FLORUSSE L J, PETERS C J, SCHOONMAN J, et al. Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate [J]. Science, 2004, 306(5695): 469–471. doi: 10.1126/science.1102076
    [52]
    LEE H, LEE J-W, KIM D Y, et al. Tuning clathrate hydrates for hydrogen storage [J]. Nature, 2005, 434(7034): 743. doi: 10.1038/nature03457
    [53]
    KOMATSU H, YOSHIOKA H, OTA M, et al. Phase equilibrium measurements of hydrogen-tetrahydrofuran and hydrogen-cyclopentane binary clathrate hydrate systems [J]. Journal of Chemical & Engineering Data, 2010, 55(6): 2214–2218.
    [54]
    STROBEL T A, HESTER K C, SLOAN E D, et al. A hydrogen clathrate hydrate with cyclohexanone: structure and stability [J]. Journal of the American Chemical Society, 2007, 129(31): 9544–9545. doi: 10.1021/ja072074h
    [55]
    STROBEL T A, KOH C A, SLOAN E D. Water cavities of sH clathrate hydrate stabilized by molecular hydrogen [J]. The Journal of Physical Chemistry B, 2008, 112(7): 1885–1887. doi: 10.1021/jp7110549
    [56]
    DUARTE A R C, SHARIATI A, ROVETTO L J, et al. Water cavities of sH clathrate hydrate stabilized by molecular hydrogen: phase equilibrium measurements [J]. The Journal of Physical Chemistry B, 2008, 112(7): 1888–1889. doi: 10.1021/jp7110605
    [57]
    KIM D-Y, LEE H. Spectroscopic identification of the mixed hydrogen and carbon dioxide clathrate hydrate [J]. Journal of the American Chemical Society, 2005, 127(28): 9996–9997. doi: 10.1021/ja0523183
    [58]
    JIANG X, WU X, ZHENG Z, et al. Ionic and superionic phases in ammonia dihydrate NH3·2H2O under high pressure [J]. Physical Review B, 2017, 95(14): 144104. doi: 10.1103/PhysRevB.95.144104
    [59]
    WILLOW S Y, XANTHEAS S S. Enhancement of hydrogen storage capacity in hydrate lattices [J]. Chemical Physics Letters, 2012, 525/526: 13–18. doi: 10.1016/j.cplett.2011.12.036
    [60]
    AKKERMANS R L C, SPENLEY N A, ROBERTSON S H. Monte Carlo methods in materials studio [J]. Molecular Simulation, 2013, 39(14/15): 1153–1164. doi: 10.1080/08927022.2013.843775
    [61]
    KIRCHNER M T, BOESE R, BILLUPS W E, et al. Gas hydrate single-crystal structure analyses [J]. Journal of the American Chemical Society, 2004, 126(30): 9407–9412. doi: 10.1021/ja049247c
    [62]
    KRESSE G, FURTHM LLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
    [63]
    KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775. doi: 10.1103/PhysRevB.59.1758
    [64]
    LEE K, MURRAY É D, KONG L, et al. Higher-accuracy van der Waals density functional [J]. Physical Review B, 2010, 82(8): 081101. doi: 10.1103/PhysRevB.82.081101
    [65]
    SPOEL D V D, LINDAHL E, HESS B, et al. GROMACS: fast, flexible, and free [J]. Journal of Computational Chemistry, 2005, 26(16): 1701–1718. doi: 10.1002/(ISSN)1096-987X
    [66]
    MOUSTAFA S G, SCHULTZ A J, KOFKE D A. Effects of finite size and proton disorder on lattice-dynamics estimates of the free energy of clathrate hydrates [J]. Industrial and Engineering Chemistry Research, 2015, 54(16): 4487–4496. doi: 10.1021/ie504008h
    [67]
    VEGA C, ABASCAL J L F, MCBRIDE C, et al. The fluid–solid equilibrium for a charged hard sphere model revisited [J]. The Journal of Chemical Physics, 2003, 119(2): 964–971. doi: 10.1063/1.1576374
    [68]
    L SAL M, VACEK V. Direct evaluation of solid–liquid equilibria by molecular dynamics using Gibbs-Duhem integration [J]. Molecular Simulation, 1997, 19(1): 43–61. doi: 10.1080/08927029708024137
    [69]
    CHALLA S R, SHOLL D S, JOHNSON J K. Adsorption and separation of hydrogen isotopes in carbon nanotubes: multicomponent grand canonical Monte Carlo simulations [J]. The Journal of Chemical Physics, 2002, 116(2): 814–824. doi: 10.1063/1.1423665
    [70]
    RAPPE A K, CASEWIT C J, COLWELL K S, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations [J]. Journal of the American Chemical Society, 1992, 114(25): 10024–10035. doi: 10.1021/ja00051a040
    [71]
    BARONI S, DE GIRONCOLI S, DAL CORSO A, et al. Phonons and related crystal properties from density-functional perturbation theory [J]. Reviews of Modern Physics, 2001, 73(2): 515–562. doi: 10.1103/RevModPhys.73.515
    [72]
    TRIBELLO G A, SLATER B, ZWIJNENBURG M A, et al. Isomorphism between ice and silica [J]. Physical Chemistry Chemical Physics, 2010, 12(30): 8597–8606. doi: 10.1039/b916367k
    [73]
    GIES H, MARKER B. The structure-controlling role of organic templates for the synthesis of porosils in the systems SiO2/template/H2O [J]. Zeolites, 1992, 12(1): 42–49. doi: 10.1016/0144-2449(92)90008-D
    [74]
    WHALLEY E. Energies of the phases of ice at zero temperature and pressure [J]. The Journal of Chemical Physics, 1984, 81(9): 4087–4092. doi: 10.1063/1.448153
    [75]
    ABASCAL J L F, VEGA C. A general purpose model for the condensed phases of water: TIP4P/2005 [J]. The Journal of Chemical Physics, 2005, 123(23): 234505. doi: 10.1063/1.2121687
    [76]
    SLOAN JR E D, KOH C. Clathrate hydrates of natural gases [M]. 3rd ed. Boca Raton, FL: CRC press, 2008.
    [77]
    PAQUETTE L A, TERNANSKY R J, BALOGH D W, et al. Total synthesis of dodecahedrane [J]. Journal of the American Chemical Society, 1983, 105(16): 5446–5450. doi: 10.1021/ja00354a043
    [78]
    STRUZHKIN V V, MILITZER B, MAO W L, et al. Hydrogen storage in molecular clathrates [J]. Chemical Reviews, 2007, 107(10): 4133–4151. doi: 10.1021/cr050183d
    [79]
    LIN K, YUAN Q, ZHAO Y-P. Using graphene to simplify the adsorption of methane on shale in MD simulations [J]. Computational Materials Science, 2017, 133: 99–107. doi: 10.1016/j.commatsci.2017.03.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views(8066) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return