Citation: | WANG Xuan, HUANG Shenghong, ZHANG Yongliang. Preliminary Investigation on Stress Distribution Mechanism of Shock Propagating across Grain Interface in Metal[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 052201. doi: 10.11858/gywlxb.20180608 |
[1] |
CAO B, BRINGA E M, MEYERS M A. Shock compression of monocrystalline copper: atomistic simulations [J]. Metallurgical and Materials Transactions A, 2007, 38(11): 2681–2688. doi: 10.1007/s11661-007-9248-9
|
[2] |
BRINGA E M, CAZAMIAS J U, ERHART P, et al. Atomistic shock Hugoniot simulation of single-crystal copper [J]. Journal of Applied Physics, 2004, 96(7): 3793–3799. doi: 10.1063/1.1789266
|
[3] |
BRINGA E M, ROSOLANKOVA K, RUDD R E, et al. Shock deformation of face-centred-cubic metals on subnanosecond timescales [J]. Nature Materials, 2006, 5(10): 805–809. doi: 10.1038/nmat1735
|
[4] |
BRINGA E M, CARO A, VICTORIA M, et al. The atomistic modeling of wave propagation in nanocrystals [J]. JOM, 2005, 57(9): 67–70. doi: 10.1007/s11837-005-0119-9
|
[5] |
BRINGA E M, CARO A, WANG Y, et al. Ultrahigh strength in nanocrystalline materials under shock loading [J]. Science, 2005, 309(5742): 1838–1841. doi: 10.1126/science.1116723
|
[6] |
WANG Y M, BRINGA E M, MCNANEY J M, et al. Deforming nanocrystalline nickel at ultrahigh strain rates [J]. Applied Physics Letters, 2006, 88(6): 061917. doi: 10.1063/1.2173257
|
[7] |
NEOGI A, MITRA N. A metastable phase of shocked bulk single crystal copper: an atomistic simulation study [J]. Scientific Reports, 2017, 7(1): 7337. doi: 10.1038/s41598-017-07809-1
|
[8] |
KADAU K, GERMANN T C, LOMDAHL P S, et al. Shock waves in polycrystalline iron [J]. Physical Review Letters, 2007, 98(13): 135701. doi: 10.1103/PhysRevLett.98.135701
|
[9] |
赵丰鹏. 纳米多孔金属铜冲击响应的分子动力学模拟研究 [D]. 合肥: 中国科学技术大学, 2014.
ZHAO F P. Molecular dynamic simulationj on shock response of nanoporous Cu [D]. Hefei: University of Science and Technology of China, 2014.
|
[10] |
马文, 祝文军, 张亚林, 等. 纳米多晶铁的冲击相变研究 [J]. 物理学报, 2011, 60(6): 066404. doi: 10.7498/aps.60.066404
MA W, ZHU W J, ZHANG Y L, et al. Shock-induced phase transformation in nanocrystalline iron [J]. Acta Physica Sinica, 2011, 60(6): 066404. doi: 10.7498/aps.60.066404
|
[11] |
马文, 祝文军, 陈开果, 等. 晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究 [J]. 物理学报, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
MA W, ZHU W J, CHEN K G, et al. Molecular dynamics investigation of shock front in nanocrystalline aluminum: grain boundary effects [J]. Acta Physica Sinica, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
|
[12] |
马文. 冲击压缩下纳米多晶金属塑性及相变机制的分子动力学研究[D]. 长沙: 国防科学技术大学, 2011.
MA W. Molecular dynamics investigations on the mechanisms of plastic deformation and phase transformation of nanocrystalline metals under shock compression [D]. Changsha: National University of Defense Technology, 2011.
|
[13] |
马文, 陆彦文. 纳米多晶铜中冲击波阵面的分子动力学研究 [J]. 物理学报, 2013, 62(3): 036201. doi: 10.7498/aps.62.036201
MA W, LU Y W. Molecular dynamics investigation of shock front in nanocrystalline copper [J]. Acta Physica Sinica, 2013, 62(3): 036201. doi: 10.7498/aps.62.036201
|
[14] |
MA W, ZHU W J, JING F Q. The shock-front structure of nanocrystalline aluminum [J]. Applied Physics Letters, 2010, 97(12): 121903. doi: 10.1063/1.3490643
|
[15] |
MA W, ZHU W, HOU Y. A comparative study on shock compression of nanocrystalline Al and Cu: shock profiles and microscopic views of plasticity [J]. Journal of Applied Physics, 2013, 114(16): 163504. doi: 10.1063/1.4826624
|
[16] |
陈开果, 祝文军, 马文, 等. 冲击波在纳米金属铜中传播的分子动力学模拟 [J]. 物理学报, 2010, 59(2): 1225–1232. doi: 10.7498/aps.59.1225
CHEN K G, ZHU W J, MA W, et al. Propagation of shockwave in nanocrystalline copper: molecular dynamics simulation [J]. Acta Physica Sinica, 2010, 59(2): 1225–1232. doi: 10.7498/aps.59.1225
|
[17] |
邵建立, 王裴, 何安民, 等. 冲击诱导金属铝表面微射流现象的微观模拟 [J]. 物理学报, 2012, 61(18): 184701. doi: 10.7498/aps.61.184701
SHAO J L, WANG P, HE A M, et al. Microscopic simulation on shock-induced micro-jet ejection from metal Al surface [J]. Acta Physica Sinica, 2012, 61(18): 184701. doi: 10.7498/aps.61.184701
|
[18] |
邵建立, 秦承森, 王裴. 动态压缩下马氏体相变力学性质的微观研究 [J]. 物理学报, 2009, 58(3): 1936–1941. doi: 10.3321/j.issn:1000-3290.2009.03.087
SHAO J L, QIN C S, WANG P. Atomistic simulation of mechanical properties of martensitic transformation under dynamic compression [J]. Acta Physica Sinica, 2009, 58(3): 1936–1941. doi: 10.3321/j.issn:1000-3290.2009.03.087
|
[19] |
邵建立, 王裴, 秦承森, 等. 铁冲击相变的分子动力学研究 [J]. 物理学报, 2007, 56(9): 5389–5393. doi: 10.3321/j.issn:1000-3290.2007.09.067
SHAO J L, WANG P, QIN C S, et al. Shock-induced phase transformations of iron studied with molecular dynamics [J]. Acta Physica Sinica, 2007, 56(9): 5389–5393. doi: 10.3321/j.issn:1000-3290.2007.09.067
|
[20] |
何安民, 邵建立, 秦承森, 等. 单晶Cu冲击加载及卸载下塑性行为的微观模拟 [J]. 物理学报, 2009, 58(8): 5667–5672. doi: 10.3321/j.issn:1000-3290.2009.08.082
HE A M, SHAO J L, QIN C S, et al. Molecular dynamics study on the plastic behavior of monocrystalline copper under shock loading and unloading [J]. Acta Physica Sinica, 2009, 58(8): 5667–5672. doi: 10.3321/j.issn:1000-3290.2009.08.082
|
[21] |
ARMAN B, LUO S N, GERMANN T C, et al. Dynamic response of Cu46Zr54 metallic glass to high-strain-rate shock loading: plasticity, spall, and atomic-level structures [J]. Physical Review B, 2010, 81(14): 144201. doi: 10.1103/PhysRevB.81.144201
|
[22] |
ZONG H, LOOKMAN T, DING X, et al. Anisotropic shock response of titanium: reorientation and transformation mechanisms [J]. Acta Materialia, 2014, 65(4): 10–18.
|
[23] |
XIE Y, HAN L B, AN Q, et al. Release melting of shock-loaded single crystal Cu [J]. Journal of Applied Physics, 2009, 105(6): 066103. doi: 10.1063/1.3099597
|
[24] |
LUO S N, GERMANN T C, TONKS D L. The effect of vacancies on dynamic response of single crystal Cu to shock waves [J]. Journal of Applied Physics, 2010, 107(5): 056102. doi: 10.1063/1.3326941
|
[25] |
YU Y, LI C, MA H H, et al. Deformation and spallation of explosive welded steels under gas gun shock loading [J]. Chinese Physics Letters, 2018, 35(1): 018101. doi: 10.1088/0256-307X/35/1/018101
|
[26] |
LUO S N, GERMANN T C, DESAI T G, et al. Anisotropic shock response of columnar nanocrystalline Cu [J]. Journal of Applied Physics, 2010, 107(12): 123507. doi: 10.1063/1.3437654
|
[27] |
LUO S N, GERMANN T C, TONKS D L, et al. Shock wave loading and spallation of copper bicrystals with asymmetric Σ3〈110〉tilt grain boundaries [J]. Journal of Applied Physics, 2010, 108(9): 093526. doi: 10.1063/1.3506707
|
[28] |
WANG L, ZHAO F, ZHAO F P, et al. Grain boundary orientation effects on deformation of Ta bicrystal nanopillars under high strain-rate compression [J]. Journal of Applied Physics, 2014, 115(5): 053528. doi: 10.1063/1.4864427
|
[29] |
CAO F, BEYERLEIN I J, ADDESSIO F L, et al. Orientation dependence of shock-induced twinning and substructures in a copper bicrystal [J]. Acta Materialia, 2010, 58(2): 549–559. doi: 10.1016/j.actamat.2009.09.033
|
[30] |
MEYERS M A, CARVALHO M S. Shock-front irregularities in polycrystalline metals [J]. Materials Science and Engineering, 1976, 24(1): 131–135. doi: 10.1016/0025-5416(76)90102-6
|
[31] |
BARBER J L, KADAU K. Shock-front broadening in polycrystalline materials [J]. Physical Review B, 2008, 77(14): 144106. doi: 10.1103/PhysRevB.77.144106
|
[32] |
ZHAKHOVSKⅡ V V, ZYBIN S V, NISHIHARA K, et al. Shock wave structure in Lennard-Jones crystal via molecular dynamics [J]. Physical Review Letters, 1999, 83(6): 1175–1178. doi: 10.1103/PhysRevLett.83.1175
|
[33] |
GERMANN T C, HOLIAN B L, LOMDAHL P S, et al. Orientation dependence in molecular dynamics simulations of shocked single crystals [J]. Physical Review Letters, 2000, 84(23): 5351–5354. doi: 10.1103/PhysRevLett.84.5351
|
[34] |
HOLIAN B L, LOMDAHL P S. Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations [J]. Science, 1998, 280(5372): 2085–2088. doi: 10.1126/science.280.5372.2085
|
[35] |
HOLIAN B L. Molecular dynamics comes of age for shockwave research [J]. Shock Waves, 2004, 13(6): 489–495.
|
[36] |
KADAU K, GERMANN T C, LOMDAHL P S, et al. Microscopic view of structural phase transitions induced by shock waves [J]. Science, 2002, 296(5573): 1681–1684. doi: 10.1126/science.1070375
|
[37] |
GERMANN T C, HOLIAN B L, LOMDAHL P S, et al. Dislocation structure behind a shock front in fcc perfect crystals: atomistic simulation results [J]. Metallurgical and Materials Transactions A, 2004, 35(9): 2609–2615. doi: 10.1007/s11661-004-0206-5
|
[38] |
ROBERTSON D H, BRENNER D W, WHITE C T. Split shock waves from molecular dynamics [J]. Physical Review Letters, 1991, 67(22): 3132–3135. doi: 10.1103/PhysRevLett.67.3132
|
[39] |
KELCHNER C L, PLIMPTON S J, HAMILTON J C. Dislocation nucleation and defect structure during surface indentation [J]. Physical Review B, 1998, 58(17): 11085–11088. doi: 10.1103/PhysRevB.58.11085
|
[40] |
LIU C M, XU C, CHENG Y, et al. Orientation-dependent responses of tungsten single crystal under shock compression via molecular dynamics simulations [J]. Computational Materials Science, 2015, 110: 359–367. doi: 10.1016/j.commatsci.2015.08.051
|
[41] |
PLIMPTON S. Fast parallel algorithms for short-range molecular-dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1–19. doi: 10.1006/jcph.1995.1039
|
[42] |
ZHOU X W, JOHNSON R A, WADLEY H N G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers [J]. Physical Review B, 2004, 69(14): 144113. doi: 10.1103/PhysRevB.69.144113
|
[43] |
Sandia National Laboratories. Lammps users manual [Z]. Albuquerque, NM: Sandia National Laboratories, 2016.
|
[44] |
STUKOWSKI A. Visualization and analysis of atomistic simulation data with ovito-the open visualization tool [J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. doi: 10.1088/0965-0393/18/1/015012
|