Citation: | ZHANG Jiawei, HUANG Shenghong. Acceleration Evaluation Model of Metal/Gas Interface by Extra Electric Field Induced by Shock under Extreme Impacting Conditions[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 012301. doi: 10.11858/gywlxb.20180607 |
[1] |
VELIKOVICH A L, DIMONTE G. Nonlinear perturbation theory of the incompressible Richtmyer-Meshkovinstability [J]. Physical Review Letters, 1996, 76(17): 3112. doi: 10.1103/PhysRevLett.76.3112
|
[2] |
NAKAI S, TAKABE H. Principles of inertial confinement fusion-physics of implosion and the concept of inertial fusion energy [J]. Reports on Progress in Physics, 1996, 59(9): 1071. doi: 10.1088/0034-4885/59/9/002
|
[3] |
ANDREWS M J. Workshop: research needs for material mixing at extremes: LA-UR-11-02565 [R]. Los Alamos: Los Alamos National Laboratory, 2011.
|
[4] |
GRAZIANI F R, BATISTA V S, BENEDICT L X, et al. Large-scale molecular dynamics simulations of dense plasmas: the Cimarron Project [J]. High Energy Density Physics, 2012, 8(1): 105–131. doi: 10.1016/j.hedp.2011.06.010
|
[5] |
ZHAKHOVSKII V, NISHIHARA K, ABE M. Molecular dynamics simulation on stability of converging shocks [C]//TANAKA K A, MEYERHOFER D D, MEYER-TER-VEHN J. Proceedings of the 2nd International Conference on Inertial Fusion Science and Applications. Elsevier, 2002: 106-109.
|
[6] |
KADAU K, GERMANN T C, HADJICONSTANTINOU N G, et al. Nanohydrodynamics simulations: an atomistic view of the Rayleigh–Taylor instability [J]. Proceedings of the National Academy of Sciences, 2004, 101(16): 5851–5855. doi: 10.1073/pnas.0401228101
|
[7] |
ZYBIN S V, ZHAKHOVSKII V V, BRINGA E M, et al. Molecular dynamics simulations of the Richtmyer-Meshkov instability in shock loaded solids [J]. AIP Conference Proceedings, 2006, 845(1): 437–441.
|
[8] |
CHERNE F J, DIMONTE G, GERMANN T C. Richtmyer-Meshkov instability examinedwith large-scalemolecular dynamics simulations [J]. AIP Conference Proceedings, 2012, 1426(1): 1307–1310.
|
[9] |
KOHANOFF J, HANSEN J P. Ab initio molecular dynamics of metallic hydrogen at high densities [J]. Physical Review Letters, 1995, 74(5): 626. doi: 10.1103/PhysRevLett.74.626
|
[10] |
KOHANOFF J, HANSEN J P. Statistical properties of the dense hydrogen plasma: an ab initio molecular dynamics investigation [J]. Physical Review E, 1996, 54(1): 768. doi: 10.1103/PhysRevE.54.768
|
[11] |
KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals [J]. Physical Review B, 1993, 47(1): 558. doi: 10.1103/PhysRevB.47.558
|
[12] |
COLLINS L, KWON I, KRESS J, et al. Quantum molecular dynamics simulations of hot, dense hydrogen [J]. Physical Review E, 1995, 52(6): 6202. doi: 10.1103/PhysRevE.52.6202
|
[13] |
龚新高. 高温及高压下液体镓的结构——第一性原理分子动力学方法研究 [J]. 物理学报, 1995, 44(6): 885–896
GONG X G. Structural properties of liquid gallium at high temperature and high pressure: an ab initio molecular dynamics study [J]. Acta Physica Sinica, 1995, 44(6): 885–896
|
[14] |
何以广. 氢和氦高压物性的第一原理分子动力学研究及实验探索 [D]. 北京: 清华大学, 2010.
|
[15] |
张玉娟. 温稠密乙烷等流体物性的第一性原理分子动力学研究 [D]. 北京: 中国工程物理研究院, 2013.
|
[16] |
刘海, 李启楷, 何远航. 高速冲击压缩梯恩梯的分子动力学模拟 [J]. 力学学报, 2015, 47(1): 174–179
LIU H, LI Q K, HE Y H. Molecular dynamics simulations of high velocity shock compressed TNT [J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 174–179
|
[17] |
宋海峰, 刘海风. 金属铍热力学性质的理论研究 [J]. 物理学报, 2007, 56(5): 2833–2837 doi: 10.3321/j.issn:1000-3290.2007.05.060
SONG H F, LIU H F. Theoretical study of thermodynamic properties of metal Be [J]. Acta Physica Sinica, 2007, 56(5): 2833–2837 doi: 10.3321/j.issn:1000-3290.2007.05.060
|
[18] |
王聪, 贺贤土, 张平. 温稠密物质的量子及半经典分子动力学研究 [C]//中国力学大会2013论文摘要集. 西安, 2013.
|
[19] |
戴佳钰, 康冬冬, 侯永, 等. 高温稠密物质的多尺度动力学研究 [C]//中国力学大会2013论文摘要集. 西安, 2013.
|
[20] |
SU J T, GODDARD III W A. Excited electron dynamics modeling of warm dense matter [J]. Physical Review Letters, 2007, 99(18): 185003. doi: 10.1103/PhysRevLett.99.185003
|
[21] |
SU J T, GODDARD III W A. The dynamics of highly excited electronic systems: applications of the electron force field [J]. The Journal of Chemical Physics, 2009, 131(24): 244501. doi: 10.1063/1.3272671
|
[22] |
JARAMILLO-BOTERO A, SU J, QI A, et al. Large-scale, long-term nonadiabatic electron molecular dynamics for describing material properties and phenomena in extreme environments [J]. Journal of Computational Chemistry, 2011, 32(3): 497–512. doi: 10.1002/jcc.21637
|
[23] |
王维荣. 极端条件下单模界面不稳定性的分子动力学研究 [D]. 合肥: 中国科学技术大学, 2017.
|
[24] |
HUANG S, WANG W, LUO X. Molecular-dynamics simulation of Richtmyer-Meshkov instability on a Li-H2 interface at extreme compressing conditions [J]. Physics of Plasmas, 2018, 25(6): 062705. doi: 10.1063/1.5018845
|
[25] |
DIMONTE G, REMINGTON B. Richtmyer-Meshkov experiments on the Nova laser at high compression [J]. Physical Review Letters, 1993, 70(12): 1806. doi: 10.1103/PhysRevLett.70.1806
|
[26] |
DIMONTE G, FRERKING C E, SCHNEIDER M, et al. Richtmyer–Meshkov instability with strong radiatively driven shocks [J]. Physics of Plasmas, 1996, 3(2): 614–630. doi: 10.1063/1.871889
|
[1] | WANG Yufeng, HAO Long, WU Fengchao, GENG Huayun, LI Jun. Structural Stability and Shock Decomposition of UH3 at High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030108. doi: 10.11858/gywlxb.20240709 |
[2] | ABLIZ Matursun, ANWAR Hushur, XIE Cuihuan, QI Wenming. High Pressure Raman Spectroscopic Study of PbCO3 in Different Pressure Transmitting Medium[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 011201. doi: 10.11858/gywlxb.20210813 |
[3] | JIANG Feng, ZHAO Huifang, XIE Yafei, JIANG Changguo, TAN Dayong, XIAO Wansheng. High Pressure Raman Spectroscopy and X-ray Diffraction of CuS2[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 040104. doi: 10.11858/gywlxb.20200509 |
[4] | WANG Yichuan. Raman Scattering of Grossular-Andradite Solid Solution[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 040101. doi: 10.11858/gywlxb.20200512 |
[5] | HE Yali, WANG Junlong, DENG Liwei, WANG Zhifei, LIU Xiuru. Structural Stability of Olivine under Rapid Compression[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 011201. doi: 10.11858/gywlxb.20190787 |
[6] | SONG Haipeng, LIU Yungui, LI Xiang, JIN Shuyu, WANG Xinyu, WU Xiang. High-Pressure Raman Spectroscopic Study of Hydroxylbastnäsite-(Ce)[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060105. doi: 10.11858/gywlxb.20190847 |
[7] | HE Yunhong, TIAN Yu, ZHAO Huifang, JIANG Feng, TAN Dayong, XIAO Wansheng. Raman Evidences for Phase Transition of Sodium Perchlorate at High Pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 041201. doi: 10.11858/gywlxb.20180543 |
[8] | HAN Xi, WU Ye, HUANG Haijun. High Pressure Raman Investigation of BiFeO3[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051202. doi: 10.11858/gywlxb.20170698 |
[9] | TIAN Yu, LIU Xue-Ting, HE Yun-Hong, ZHAO Hui-Fang, JIANG Feng, TAN Da-Yong, XIAO Wan-Sheng. Raman Evidences of Chemical Reaction of NaCl-O2 System at High Pressure and High Temperature[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 692-697. doi: 10.11858/gywlxb.2017.06.003 |
[10] | LI Dong-Fei, ZHANG Ke-Wei, LI Zuo-Wei, LIU Cheng-Zhi, GUO Rui, SUN Cheng-Lin, LI Hai-Bo. High Pressure Raman Investigation of Td-WTe2 Bulk Single Crystal[J]. Chinese Journal of High Pressure Physics, 2016, 30(5): 369-374. doi: 10.11858/gywlxb.2016.05.004 |
[11] | YUAN Zhen, ZHANG Shao-Peng, JIN Chang-Qing, WANG Xiao-Hui. Raman Spectroscopy Studies of Nanocrystalline Lead Zirconate Titanate as Functions of High Pressure[J]. Chinese Journal of High Pressure Physics, 2015, 29(2): 95-98. doi: 10.11858/gywlxb.2015.02.002 |
[12] | CHEN Yuan-Fu, LIU Fu-Sheng, ZHANG Ning-Chao, ZHAO Bei-Jing, WANG Jun-Guo, ZHANG Ming-Jian, XUE Xue-Dong. Measurement System of Transient Raman Spectroscopy and Its Application to Benzene under Shock Compression[J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 505-510. doi: 10.11858/gywlxb.2013.04.006 |
[13] | GAO Ling-Ling, MA Yan-Mei, LIU Dan, HAO Jian, JIN Yun-Xia, WANG Feng, WANG Qiu-Shi, ZOU Guang-Tian, CUI Qi-Liang. Raman Spectra Characterization of Cycloheptane under High Pressure[J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 192-196 . doi: 10.11858/gywlxb.2008.02.013 |
[14] | QU Qing-Ming, ZHENG Hai-Fei. Research on Using Raman Spectra of Carborundum Anvil as Pressure Sensor at Pressure of 0.1~3 000 MPa[J]. Chinese Journal of High Pressure Physics, 2007, 21(3): 332-336 . doi: 10.11858/gywlxb.2007.03.020 |
[15] | CHEN Jin-Yang, ZHENG Hai-Fei, ZENG Yi-Shan, SUN Qiang. An in-Situ Raman Spectroscopy Study of Isochoric H2O-CO2-CH4 Fluids under High Temperature[J]. Chinese Journal of High Pressure Physics, 2003, 17(1): 8-15 . doi: 10.11858/gywlxb.2003.01.002 |
[16] | ZHAO Jin, ZHENG Hai-Fei. Research on Raman Spectra of Calcite at Pressure of 0.1~800 MPa[J]. Chinese Journal of High Pressure Physics, 2003, 17(3): 226-229 . doi: 10.11858/gywlxb.2003.03.012 |
[17] | LIU Zhen-Xian, CUI Qi-Liang, ZHAO Yong-Nian, ZOU Guang-Tian. Influence of Pressure-Transmitting Media on the Lattice Vibration and Phase Transition Pressure-High Pressure Raman Spectra Studies of -Bi2O3[J]. Chinese Journal of High Pressure Physics, 1990, 4(2): 81-86 . doi: 10.11858/gywlxb.1990.02.001 |
[18] | LI Qiang-Min, SU Wen-Hui, LONG Xiang, WU Dai-Ming, GAO Zhong-Min. High-Pressure and Temperature Syntheses and Structural Stability Studies of Some Rare-Earth Oxides[J]. Chinese Journal of High Pressure Physics, 1989, 3(1): 42-50 . doi: 10.11858/gywlxb.1989.01.006 |
[19] | HU Xiao-Mian. Crystal structure Stability Study by Molecular Dynamics Method with Variable Cell[J]. Chinese Journal of High Pressure Physics, 1989, 3(2): 132-142 . doi: 10.11858/gywlxb.1989.02.005 |
[20] | ZHANG Qiang, SU Wen-Hui. A Study on the Formation and the Stability of Al6Mn Quasicrystal under High Static Pressure[J]. Chinese Journal of High Pressure Physics, 1988, 2(1): 58-66 . doi: 10.11858/gywlxb.1988.01.008 |