Volume 33 Issue 1
Jan 2019
Turn off MathJax
Article Contents
YANG Manman, ZHU Hongyu, LI Hongtao, FAN Haotian, HU Qiang, HU Meihua, LI Shangsheng, SU Taichao. Thermoelectric Properties of PbSe-PbS Solid Solutions Prepared by Mechanical Alloying Method and High Pressure Sintering[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 011102. doi: 10.11858/gywlxb.20180597
Citation: YANG Manman, ZHU Hongyu, LI Hongtao, FAN Haotian, HU Qiang, HU Meihua, LI Shangsheng, SU Taichao. Thermoelectric Properties of PbSe-PbS Solid Solutions Prepared by Mechanical Alloying Method and High Pressure Sintering[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 011102. doi: 10.11858/gywlxb.20180597

Thermoelectric Properties of PbSe-PbS Solid Solutions Prepared by Mechanical Alloying Method and High Pressure Sintering

doi: 10.11858/gywlxb.20180597
  • Received Date: 14 Jul 2018
  • Rev Recd Date: 12 Aug 2018
  • Lead selenide (PbSe) has received extensive attention in recent years as a non-tellurium thermoelectric material. In this paper, PbSe-PbS solid solution alloys (PbSe1–xSx) were prepared by mechanical alloying combined with high pressure sintering method. The influence of Se/S content on its structure and thermoelectric properties was studied. The results demonstrate that the mechanical alloying method can rapidly synthesize PbSe1–xSx solid solution alloy powder, and achieve rapid densification by high pressure sintering. The electrical transport properties and conductivity type of PbSe1–xSx powder can be controlled by adjusting the Se/S ratio; solid solution alloy can realize short-wave phonon scattering, which significantly reduces the thermal conductivity of PbSe material. When x = 0.5 and the temperature is 600 K, the highest quality factor of PbSe1–xSx is 0.54, which is 64% higher than that of PbSe (0.33@450 K).

     

  • loading
  • [1]
    SNYDER G J, TBERER E S. Complex thermoelectric materials [J]. Nature Materials, 2008, 7(2): 105–114. doi: 10.1038/nmat2090
    [2]
    POUDEL B, HAO Q, MA Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys [J]. Science, 2008, 320(5876): 634–638. doi: 10.1126/science.1156446
    [3]
    BENNETT G. Space nuclear power: opening the final frontier [C]//4th International Energy Conversion Engineering Conference and Exhibit (IECEC), 2006: 4191.
    [4]
    PRICE P J. Theory of transport effects in semiconductors: thermoelectricity [J]. Physical Review, 1956, 104(5): 1223–1239. doi: 10.1103/PhysRev.104.1223
    [5]
    BHANDARI C M, ROWE D M. CRC handbook of thermoelectrics [M]. Boca Raton: CRC Press, 1995.
    [6]
    FAN H, SU T, LI H, et al. Enhanced thermoelectric performance of PbSe Co-doped with Ag and Sb [J]. Journal of Alloys and Compounds, 2015, 639: 106–110. doi: 10.1016/j.jallcom.2015.03.117
    [7]
    LIU W S, ZHANG B P, LI J F, et al. Enhanced thermoelectric properties in CoSb3-xTex alloys prepared by mechanical alloying and spark plasma sintering [J]. Journal of Applied Physics, 2007, 102(10): 103717. doi: 10.1063/1.2815671
    [8]
    HU L P, ZHU T J, WANG Y G, et al. Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction [J]. NPG Asia Materials, 2014, 6(2): e88. doi: 10.1038/am.2013.86
    [9]
    ZHAO L D, ZHANG B P, LI J F, et al. Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering [J]. Journal of Alloys and Compounds, 2008, 455(1/2): 259–264.
    [10]
    LI J, TAN Q, LI J F, et al. BiSbTe-based nanocomposites with high ZT: the effect of SiC nanodispersion on thermoelectric properties [J]. Advanced Functional Materials, 2013, 23(35): 4317–4323. doi: 10.1002/adfm.v23.35
    [11]
    DUAN B, ZHAI P, WEN P, et al. Enhanced thermoelectric and mechanical properties of Te-substituted skutterudite via nano-TiN dispersion [J]. Scripta Materialia, 2012, 67(4): 372–375. doi: 10.1016/j.scriptamat.2012.05.028
    [12]
    STEELE M C, ROSI F D. Thermal conductivity and thermoelectric power of germanium-silicon alloys [J]. Journal of Applied Physics, 1958, 29(11): 1517–1520. doi: 10.1063/1.1722984
    [13]
    XU Z J, HU L P, YING P J, et al. Enhanced thermoelectric and mechanical properties of zone melted p-type (Bi, Sb)2Te3 thermoelectric materials by hot deformation [J]. Acta Materialia, 2015, 84: 385–392. doi: 10.1016/j.actamat.2014.10.062
    [14]
    BATES H E, WEINSTEIN M. The preparation and properties of segmented lead telluride-silicon-germanium thermoelements: 19660062826 [R]. USA: NASA, 1966.
    [15]
    LALONDE A D, PEI Y, WANG H, et al. Lead telluride alloy thermoelectrics [J]. Materials Today, 2011, 14(11): 526–532. doi: 10.1016/S1369-7021(11)70278-4
    [16]
    HU Z, GAO S. Upper crustal abundances of trace elements: a revision and update [J]. Chemical Geology, 2008, 253(3/4): 205–221.
    [17]
    RAVICH I U I. Semiconducting lead chalcogenides [M]//SEEGER K. Semiconductor Physics. Springer Science & Business Media, 1970:5.
    [18]
    WANG H, PEI Y, LALONDE A D, et al. Heavily doped p-type pbse with high thermoelectric performance: an alternative for PbTe [J]. Advanced Materials, 2011, 23(11): 1366–1370. doi: 10.1002/adma.v23.11
    [19]
    LEE Y, LO S H, CHEN C, et al. Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide [J]. Nature Communications, 2014, 5: 3640. doi: 10.1038/ncomms4640
    [20]
    PARKER D, SINGH D J. High-temperature thermoelectric performance of heavily doped PbSe [J]. Physical Review B, 2010, 82(3): 035204.
    [21]
    PEI Y L, LIU Y. Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS [J]. Journal of Alloys and Compounds, 2012, 514(5): 40–44.
    [22]
    FAN H T, SU T C, LI H T, et al. Enhanced low temperature thermoelectric performance and weakly temperature-dependent figure-of-merit values of PbTe-PbSe solid solutions [J]. Journal of Alloys and Compounds, 2016, 658: 885–890. doi: 10.1016/j.jallcom.2015.10.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views(7332) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return