Citation: | LIU Hongjie, WANG Weili, MIAO Run, WU Shiyong, WANG Junhua. Explosive Interruption of Tandem Warhead with Different Multilayer Structures[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 015104. doi: 10.11858/gywlxb.20180585 |
[1] |
LEBLANC J, SHILLINGS C, GAUCH E, et al. Near field underwater explosion response of polyurea coated composite plates [J]. Experimental Mechanics, 2016, 56(4): 569–581. doi: 10.1007/s11340-015-0071-8
|
[2] |
HARIS A, LEE H P, TAN V B C. An experimental study on shock wave mitigation capability of polyurea and shear thickening fluid based suspension pads [J]. Defence Technology, 2018, 14(1): 12–18. doi: 10.1016/j.dt.2017.08.004
|
[3] |
DAI L, WU C, AN F, et al. Experimental investigation of polyurea-coated steel plates at underwater explosive loading [J]. Advances in Materials Science and Engineering, 2018: 1264276.
|
[4] |
曾必强, 姜春兰, 严翰新, 等. 串联攻坚战斗部前级爆轰场对随进弹随进影响分析 [J]. 兵工学报, 2010(Suppl 1): 162–166
ZENG B Q, JIANG C L, YAN H X, et al. Analysis for effects of precursory detonation field on projectile following course in tandem warhead [J]. Acta Armamentarii, 2010(Suppl 1): 162–166
|
[5] |
姜夕博, 饶国宁, 徐森, 等. 冲击波在有机玻璃中衰减特性的数值模拟与实验研究 [J]. 南京理工大学学报(自然科学版), 2012, 36(6): 1059–1064 doi: 10.3969/j.issn.1005-9830.2012.06.028
JIANG X B, RAO G N, XU S, et al. Numerical simulation and experimental research on shock wave attenuation properties in PMMA [J]. Journal of Nanjing University of Science and Technology, 2012, 36(6): 1059–1064 doi: 10.3969/j.issn.1005-9830.2012.06.028
|
[6] |
徐森, 刘大斌, 彭金华, 等. 药柱冲击波在有机玻璃中的衰减特性研究 [J]. 高压物理学报, 2010, 24(6): 431–437 doi: 10.11858/gywlxb.2010.06.005
XU S, LIU D B, PENG J H, et al. Study on the shock wave attenuation of the booster charge in the PMMA gap [J]. Chinese Journal of High Pressure Physics, 2010, 24(6): 431–437 doi: 10.11858/gywlxb.2010.06.005
|
[7] |
侯海周, 彭金华, 胡毅亭. 爆炸冲击波在酚醛层压材料中衰减特性的实验研究 [J]. 火工品, 2016(2): 13–16 doi: 10.3969/j.issn.1003-1480.2016.02.005
HOU H Z, PENG J H, HU Y T. Experimental study of shock wave attenuation properties in phenolic cotton fabric material [J]. Initiators & Pyrotechnics, 2016(2): 13–16 doi: 10.3969/j.issn.1003-1480.2016.02.005
|
[8] |
TEDESCO J W, LANDIS D W. Wave propagation through layered systems [J]. Computers & Structures, 1989, 32(3/4): 625–638.
|
[9] |
PETEL O E, JETTÉ F X, GOROSHIN S, et al. Blast wave attenuation through a composite of varying layer distribution [J]. Shock Waves, 2011, 21(3): 215–224. doi: 10.1007/s00193-010-0295-6
|
[10] |
石少卿, 刘仁辉, 汪敏. 钢板-泡沫铝-钢板新型复合结构降低爆炸冲击波性能研究 [J]. 振动与冲击, 2008, 27(4): 143–146 doi: 10.3969/j.issn.1000-3835.2008.04.037
SHI S Q, LIU R H, WANG M. Shock wave reduction behavior of a new compound structure composed of a foam aluminum layer between two steel plates [J]. Journal of Vibration and Shock, 2008, 27(4): 143–146 doi: 10.3969/j.issn.1000-3835.2008.04.037
|
[11] |
董永香, 冯顺山, 李学林. 爆炸波在硬-软-硬三明治介质中传播特性的数值分析 [J]. 弹道学报, 2007, 19(1): 59–63 doi: 10.3969/j.issn.1004-499X.2007.01.017
DONG Y X, FENG S S, LI X L. Numerical analysis of propagation characteristics of explosive wave in the hard-soft-hard sandwich media [J]. Journal of Ballistics, 2007, 19(1): 59–63 doi: 10.3969/j.issn.1004-499X.2007.01.017
|
[12] |
陈闯, 王晓鸣, 李文彬, 等. 多层介质阻抗匹配对隔爆效果的影响 [J]. 振动与冲击, 2014, 33(17): 105–110
CHEN C, WANG X M, LI W B, et al. Influence of multilayered media impedance matching on explosion interruption effect [J]. Journal of Vibration and Shock, 2014, 33(17): 105–110
|
[13] |
北京工业学院八系. 爆炸及其作用 [M]. 北京: 国防工业出版社, 1994: 105-112.
|
[14] |
孙承纬. 爆炸物理学 [M]. 北京: 科学出版社, 2011: 205-207.
|
[15] |
宋博, 胡时胜, 王礼立. 分层材料的不同排列次序对透射冲击波强度的影响 [J]. 兵工学报, 2000, 21(3): 272–274 doi: 10.3321/j.issn:1000-1093.2000.03.021
SONG B, HU S S, WANG L L. Influence on the transmitted intensity of shock wave through different tactic orders of layered materials [J]. Acta Armamentarii, 2000, 21(3): 272–274 doi: 10.3321/j.issn:1000-1093.2000.03.021
|
[16] |
汪文革, 杨世军, 韩永要, 等. 基于ANSYS/LS-DYNA的聚能射流侵彻装甲钢的有限元分析 [J]. 兵工自动化, 2008, 27(3): 39–41 doi: 10.3969/j.issn.1006-1576.2008.03.015
WANG W G, YANG S J, HAN Y Y, et al. Finite element analysis of shaped charge jet penetrating into target based on ANSYS/LS-DYNA [J]. Ordnance Industry Automation, 2008, 27(3): 39–41 doi: 10.3969/j.issn.1006-1576.2008.03.015
|
[17] |
TOGAMI T C, BAKER W E, FORRESTAL M J. A split Hopkinson bar technique to evaluate the performance of accelerometers [J]. Journal of Applied Mechanics, 1996, 63(2): 353–356. doi: 10.1115/1.2788872
|
[18] |
FRANZEN R R, SCHNEIDEWIND P N. Observations concerning the penetration mechanics of tubular hypervelocity penetrators [J]. International Journal of Impact Engineering, 1991, 11(3): 289–303. doi: 10.1016/0734-743X(91)90040-M
|
[19] |
WASMUND T L. New model to evaluate weapon effects and platform vulnerability: AJEM [J]. Wstiac Newsletter, 2001, 2: 1–3.
|
[20] |
LEE W H, PAINTER J W. Material void-opening computation using particle method [J]. International Journal of Impact Engineering, 1999, 22(1): 1–22. doi: 10.1016/S0734-743X(98)00041-4
|
[21] |
甘云丹, 宋力, 杨黎明. 弹性体涂覆钢板抗冲击性能的数值模拟 [J]. 兵工学报, 2009(Suppl 2): 15–18
GAN Y D, SONG L, YANG L M. Numerical simulation for anti-blast performances of steel plate coated with elastomer [J]. Acta Armamentarii, 2009(Suppl 2): 15–18
|