Citation: | WANG Tao, WANG Bing, LIN Jianyu, BAI Jingsong, LI Ping, ZHONG Min, TAO Gang. Computational Analysis of RM Instability with Inverse Chevron Interface[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 012302. doi: 10.11858/gywlxb.20180575 |
[1] |
RICHTMYER R D. Taylor instability in a shock acceleration of compressible of fluids [J]. Communications on Pure and Applied Mathematics, 1960, 13: 297–319. doi: 10.1002/(ISSN)1097-0312
|
[2] |
MESHKOV E E. Instability of the interface of two gases accelerated by a shock wave [J]. Fluid Dynamics, 1969, 4(5): 101–104.
|
[3] |
CHANDRASEKHAR S. Hydrodynamic and hydromagnetic stability [M]. London: Oxford University, 1961.
|
[4] |
王涛, 柏劲松, 李平, 等. 再冲击载荷作用下流动混合的数值模拟 [J]. 爆炸与冲击, 2009, 29(3): 243–248 doi: 10.3321/j.issn:1001-1455.2009.03.004
WANG T, BAI J S, LI P, et al. Numerical simulation of flow mixing impacted by reshock [J]. Explosion and Shock Waves, 2009, 29(3): 243–248 doi: 10.3321/j.issn:1001-1455.2009.03.004
|
[5] |
WANG T, BAI J S, LI P, et al. The numerical study of shock-induced hydrodynamic instability and mixing [J]. Chinese Physics B, 2009, 18(3): 1127–1135. doi: 10.1088/1674-1056/18/3/048
|
[6] |
BAI J S, LIU J H, WANG T, et al. Investigation of the Richtmyer-Meshkov instability with double perturbation interface in nonuniform flows [J]. Physical Review E, 2010, 81(2): 056302.
|
[7] |
BAI J S, WANG B, WANG T, et al. Numerical simulation of the Richtmyer-Meshkov instability in initially nonuniform flows and mixing with reshock [J]. Physical Review E, 2012, 86(6): 066319. doi: 10.1103/PhysRevE.86.066319
|
[8] |
XIAO J X, BAI J S, WANG T. Numerical study of initial perturbation effects on Richtmyer-Meshkov instability in nonuniform flows [J]. Physical Review E, 2016, 94(1): 013112. doi: 10.1103/PhysRevE.94.013112
|
[9] |
LEINOV E, MALAMUD G, ELBAZ Y, et al. Experimental and numerical investigation of the Richtmyer–Meshkov instability under re-shock conditions [J]. Journal of Fluid Mechanics, 2009, 626: 449–475. doi: 10.1017/S0022112009005904
|
[10] |
THORNBER B, DRIKAKIS D, YOUNGS D L, et al. The influence of initial conditions on turbulent mixing due to Richtmyer–Meshkov instability [J]. Journal of Fluid Mechanics, 2010, 654: 99–139. doi: 10.1017/S0022112010000492
|
[11] |
LATINI M, SCHILLING O, DON W S. Richtmyer-Meshkov instability-induced mixing: initial conditions modeling, three-dimensional simulation and comparisons to experiment: UCRL-CONF-227160 [R]. Livermore: Lawrence Livermore National Laboratory, 2007.
|
[12] |
SCHILLING O, LATINI M. High-order WENO simulations of three-dimensional reshocked Richtmyer–Meshkov instability to late times: dynamics, dependence on initial conditions, and comparisons to experimental data [J]. Acta Mathematica Scientia, 2010, 30(2): 595–620. doi: 10.1016/S0252-9602(10)60064-1
|
[13] |
MALAMUD G, LEINOV E, SADOT O, et al. Reshocked Richtmyer-Meshkov instability: numerical study and modeling of random multi-mode experiments [J]. Physics of Fluids, 2014, 26(8): 084107. doi: 10.1063/1.4893678
|
[14] |
MIKAELIAN K O. Testing an analytic model for Richtmyer–Meshkov turbulent mixing widths [J]. Shock Waves, 2015, 25(1): 35–45. doi: 10.1007/s00193-014-0537-0
|
[15] |
SI T, LONG T, ZHAI Z, et al. Experimental investigation of cylindrical converging shock waves interacting with a polygonal heavy gas cylinder [J]. Journal of Fluid Mechanics, 2015, 784: 225–251. doi: 10.1017/jfm.2015.581
|
[16] |
LIANG Y, DING J, ZHAI Z, et al. Interaction of cylindrically converging diffracted shock with uniform interface [J]. Physics of Fluids, 2017, 29(8): 086101. doi: 10.1063/1.4997071
|
[17] |
HILL D J, PANTANO C, PULLIN D I. Large-eddy simulation and multiscale modelling of a Richtmyer–Meshkov instability with reshock [J]. Journal of Fluid Mechanics, 2006, 557: 29–61. doi: 10.1017/S0022112006009475
|
[18] |
GRINSTEIN F F, GOWARDHAN A A, WACHTOR A J. Simulations of Richtmyer–Meshkov instabilities in planar shock-tube experiments [J]. Physics of Fluids, 2011, 23(3): 034106. doi: 10.1063/1.3555635
|
[19] |
WEBER C, HAEHN N, OAKLEY J, et al. Turbulent mixing measurements in the Richtmyer-Meshkov instability [J]. Physics of Fluids, 2012, 24(7): 074105. doi: 10.1063/1.4733447
|
[20] |
TRITSCHLER V K, OLSON B J, LELE S K, et al. On the Richtmyer–Meshkov instability evolving from a deterministic multimode planar interface [J]. Journal of Fluid Mechanics, 2014, 755: 429–462. doi: 10.1017/jfm.2014.436
|
[21] |
WANG T, BAI J S, LI P, et al. Large-eddy simulations of the multi-mode Richtmyer–Meshkov instability and turbulent mixing under reshock [J]. High Energy Density Physics, 2016, 19: 65–75. doi: 10.1016/j.hedp.2016.03.001
|
[22] |
WANG T, TAO G, BAI J, et al. Dynamical behavior of the Richtmyer–Meshkov instability-induced turbulent mixing under multiple shock interactions [J]. Canadian Journal of Physics, 2017, 95(8): 671–681. doi: 10.1139/cjp-2016-0633
|
[23] |
MOHAGHAR M, CARTER J, MUSCI B, et al. Evaluation of turbulent mixing transition in a shock-driven variable-density flow [J]. Journal of Fluid Mechanics, 2017, 831: 779–825. doi: 10.1017/jfm.2017.664
|
[24] |
BANERJEE A, GORE R A, ANDREWS M J. Development and validation of a turbulent-mix model for variable-density and compressible flows [J]. Physical Review E, 2010, 82(4): 046309. doi: 10.1103/PhysRevE.82.046309
|
[25] |
CABOT W H, COOK A W. Reynolds number effects on Rayleigh–Taylor instability with possible implications for type-Ia supernovae [J]. Nature Physics, 2006, 2(8): 562–568. doi: 10.1038/nphys361
|
[26] |
VREMAN A W. An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications [J]. Physics of Fluids, 2004, 16(10): 3670–3681. doi: 10.1063/1.1785131
|
[27] |
HOLDER D A, BARTON C J. Shock tube Richtmyer-Meshkov experiments: inverse chevron and half height [C]// Proceedings of the 9th International Workshop on Physics of Compressible Turbulent Mixing. Cambridge, UK, 2004.
|