Volume 33 Issue 1
Jan 2019
Turn off MathJax
Article Contents
ZHANG Lei, MA Xiaomin, LI Rujiang, LI Xin, WU Guiying. Anti-explosion Performance and Failure Mechanism of Fiber-Metal Laminates[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 014202. doi: 10.11858/gywlxb.20180567
Citation: ZHANG Lei, MA Xiaomin, LI Rujiang, LI Xin, WU Guiying. Anti-explosion Performance and Failure Mechanism of Fiber-Metal Laminates[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 014202. doi: 10.11858/gywlxb.20180567

Anti-explosion Performance and Failure Mechanism of Fiber-Metal Laminates

doi: 10.11858/gywlxb.20180567
  • Received Date: 18 May 2018
  • Rev Recd Date: 17 Aug 2018
  • In this work we performed blast loading tests on basalt fiber-aluminum alloy laminates and carbon fiber-aluminum alloy laminate using an explosion impact pendulum system and obtained different loading impulses by changing the quality of the explosive, thereby analyzing the influences of load impulse, structure combination and fiber type on the deformation/failure mode of fiber metal laminates and revealing the laminates’ typical failure modes such as delamination, matrix failure, metal tear and plastic deformation. The experimental results showed that the plastic deformations of the aluminum alloy layer in the fiber metal laminate and the damage area of the fiber layer increase with the increase of the impulse, and the fiber metal laminates have better impact resistance than that of the single metal laminate.

     

  • loading
  • [1]
    KRISHNAKUMAR S. Fiber metal laminates-the synthesis of metals and composites [J]. Material and Manufacturing Process, 1994, 9(2): 295–354. doi: 10.1080/10426919408934905
    [2]
    VOGELESANG L B, VLOT A. Development of fibre metal laminates for advanced aerospace structures [J]. Journal of Materials Processing Technology, 2000, 103(1): 1–5. doi: 10.1016/S0924-0136(00)00411-8
    [3]
    VILLANUEVA G R. Processing and characterisation of the mechanical properties of novel fibre-metal laminates [D]. Liverpool: University of Liverpool, 2002.
    [4]
    VILLANUEVA G R, CANTWELL W J. The high velocity impact response of composite and FML-reinforced sandwich structures [J]. Composites Science and Technology, 2004, 64(1): 35–54. doi: 10.1016/S0266-3538(03)00197-0
    [5]
    CANTWELL W J. The mechanical properties of fibre-metal laminates based on glass fibre reinforced polypropylene [J]. Composites Science and Technology, 2000, 60(7): 1085–1094. doi: 10.1016/S0266-3538(00)00002-6
    [6]
    陈琪, 关志东, 黎增山. GLARE层板性能研究进展 [J]. 科技导报, 2013, 31(7): 50–56

    CHEN Q, GUAN Z D, LI Z S. Review of GLARE technology [J]. Science & Technology Review, 2013, 31(7): 50–56
    [7]
    CHAI G B, MANIKANDAN P. Low velocity impact response of fibre-metal laminates-a review [J]. Composite Structures, 2014, 107(3): 363–381.
    [8]
    LANGDON G S, NURICK G N, KARAGIOZOVA D, et al. Fiber-metal laminate panels subjected to blast loading [M]//Dynamic Failure of Materials and Structures. Boston: Springer, 2009: 269-296.
    [9]
    SOUTIS C, MOHAMED G, HODZIC A. Modelling the structural response of GLARE panels to blast load [J]. Composite Structures, 2011, 94(1): 267–276. doi: 10.1016/j.compstruct.2011.06.014
    [10]
    MOHAMED G F A, SOUTIS C, HODZIC A. Blast resistance and damage modelling of fibre metal laminates to blast loads [J]. Applied Composite Materials, 2012, 19(3/4): 619–636.
    [11]
    LEMANSKI S L, NURICK G N, LANGDON G S, et al. Behaviour of fibre metal laminates subjected to localised blast loading-Part II: quantitative analysis [J]. International Journal of Impact Engineering, 2007, 34(7): 1223–1245. doi: 10.1016/j.ijimpeng.2006.05.009
    [12]
    LANGDON G S, LEMANSKI S L, NURICK G N, et al. Behaviour of fibre-metal laminates subjected to localised blast loading: Part I-experimental observations [J]. International Journal of Impact Engineering, 2007, 34(7): 1202–1222. doi: 10.1016/j.ijimpeng.2006.05.008
    [13]
    FLEISHER H J. Design and explosive testing of a blast resistant luggage container [J]. Structures under Shock & Impact IV, 1996.
    [14]
    BIKAKIS G S E, DIMOU C D, SIDERIDIS E P. Ballistic impact response of fiber-metal laminates and monolithic metal plates consisting of different aluminum alloys [J]. Aerospace Science and Technology, 2017, 69: 201–208. doi: 10.1016/j.ast.2017.06.028
    [15]
    YAGHOUBI A S, LIAW B. Thickness influence on ballistic impact behaviors of GLARE 5 fiber-metal laminated beams: experimental and numerical studies [J]. Composite Structures, 2012, 94(8): 2585–2598. doi: 10.1016/j.compstruct.2012.03.004
    [16]
    SITNIKOVA E, GUAN Z W, SCHLEYER G K, et al. Modelling of perforation failure in fibre metal laminates subjected to high impulsive blast loading [J]. International Journal of Solids and Structures, 2014, 51(18): 3135–3146. doi: 10.1016/j.ijsolstr.2014.05.010
    [17]
    古兴瑾, 许希武. 纤维增强复合材料层板高速冲击损伤数值模拟 [J]. 复合材料学报, 2012, 29(1): 150–161

    GU X J, XU X W. Numerical simulation of high speed impact damage of fiber reinforced composite laminates [J]. Journal of Composite Materials, 2012, 29(1): 150–161
    [18]
    马小敏. 芳纶纤维层合板的冲击力学行为 [D]. 太原: 太原理工大学, 2015.
    [19]
    LI X, YAHYA M Y, BASSIRI NIA A, et al. Dynamic failure of fibre-metal laminates under impact loading-experimental observations [J]. Journal of Reinforced Plastics and Composites, 2016, 35(4): 305–319. doi: 10.1177/0731684415616501
    [20]
    敬霖, 王志华, 赵隆茂. 爆炸荷载作用下结构冲量的测量 [J]. 实验力学, 2009, 24(2): 151–156

    JING L, WANG Z H, ZHAO L M. Measurement of impulse acted on a structure subjected to blast loading [J]. Journal of Experimental Mechanics, 2009, 24(2): 151–156
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(9689) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return