Citation: | XU Weizheng, WU Weiguo. An Improved Third-Order WENO-Z Scheme for Achieving Optimal Order near Critical Points and Its Application[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 032302. doi: 10.11858/gywlxb.20170696 |
[1] |
LIU X D, OSHER S, CHAN T.Weighted essentially non-oscillatory schemes[J].Journal of Computational Physics, 1994, 115(1):200-212. doi: 10.1006/jcph.1994.1187
|
[2] |
HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes (Ⅲ)//HUSSAINI M Y, VAN LEER B, VAN ROSENDALE J. Upwind and high-resolution schemes. Berlin, Heidelberg: Springer, 1987: 231-303.
|
[3] |
JIANG G S, SHU C W.Efficient implementation of weighted ENO schemes[J].Journal of Computational Physics, 1995, 126(1):202-228.
|
[4] |
HSIEH T J, WANG C H, YANG J Y.Numerical experiments with several variant WENO schemes for the Euler equations[J].International Journal for Numerical Methods in Fluids, 2010, 58(9):1017-1039.
|
[5] |
ZHAO S, LARDJANE N, FEDIOUN I.Comparison of improved finite-difference WENO schemes for the implicit large eddy simulation of turbulent non-reacting and reacting high-speed shear flows[J].Computers & Fluids, 2014, 95(3):74-87. https://www.sciencedirect.com/science/article/pii/S0045793014000802
|
[6] |
WANG C, DING J X, SHU C W, LI T.Three-dimensional ghost-fluid large-scale numerical investigation on air explosion[J].Computers & Fluids, 2016, 137:70-79. https://www.sciencedirect.com/science/article/pii/S0045793016302353
|
[7] |
ZAGHI S, MASCIO A D, FAVINI B.Application of WENO-positivity-preserving schemes to highly under-expanded jets[J].Journal of Scientific Computing, 2016, 69(3):1-25. doi: 10.1007/s10915-016-0226-5.pdf
|
[8] |
HENRICK A K, ASLAM T D, POWERS J M.Mapped weighted essentially non-oscillatory schemes:achieving optimal order near critical points[J].Journal of Computational Physics, 2005, 207(2):542-567. doi: 10.1016/j.jcp.2005.01.023
|
[9] |
BORGES R, CARMONA M, COSTA B, et al.An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J].Journal of Computational Physics, 2008, 227(6):3191-3211. doi: 10.1016/j.jcp.2007.11.038
|
[10] |
YAMALEEV N K, CARPENTER M H.A systematic methodology for constructing high-order energy stable WENO schemes[J].Journal of Computational Physics, 2009, 228:4248-4272. doi: 10.1016/j.jcp.2009.03.002
|
[11] |
CASTRO M, COSTA B, DON W S.High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws[J].Journal of Computational Physics, 2011, 230(5):1766-1792. doi: 10.1016/j.jcp.2010.11.028
|
[12] |
HA Y, KIM C H, LEE Y J, et al.An improved weighted essentially non-oscillatory scheme with a new smoothness indicator[J].Journal of Computational Physics, 2013, 232(1):68-86. doi: 10.1016/j.jcp.2012.06.016
|
[13] |
SHEN Y Q, ZHA G C.Improvement of weighted essentially non-oscillatory schemes near discontinuities[J].Computers & Fluids, 2014, 96(12):1-9. https://www.sciencedirect.com/science/article/pii/S0045793014000656
|
[14] |
CHANG H K, HA Y, YOON J.Modified non-linear weights for fifth-order weighted essentially non-oscillatory schemes[J].Journal of Computational Science, 2016, 67(1):299-323. doi: 10.1007/s10915-015-0079-3
|
[15] |
YAMALEEV N K, CARPENTER M H.Third-order energy stable WENO scheme[J].Journal of Computational Physics, 2013, 228(8):3025-3047. https://www.sciencedirect.com/science/article/pii/S002199910900014X
|
[16] |
WU X S, ZHAO Y X.A high-resolution hybrid scheme for hyperbolic conservation laws[J].International Journal for Numerical Methods in Fluids, 2015, 78(3):162-187. doi: 10.1002/FLD.v78.3
|
[17] |
WU X, LIANG J, ZHAO Y.A new smoothness indicator for third-order WENO scheme[J].International Journal for Numerical Methods in Fluids, 2016, 81(7):451-459. doi: 10.1002/fld.v81.7
|
[18] |
DON W S, BORGES R.Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes[J].Journal of Computational Physics, 2013, 250(4):347-372. https://www.sciencedirect.com/science/article/pii/S0021999113003501
|
[19] |
HU X Y, WANG Q, ADAMS N A.An adaptive central-upwind weighted essentially non-oscillatory scheme[J].Journal of Computational Physics, 2010, 229(23):8952-8965. doi: 10.1016/j.jcp.2010.08.019
|
[20] |
SHU C W, OSHER S.Efficient implementation of essentially non-oscillatory shock-capturing schemes, Ⅱ[J].Journal of Computational Physics, 1989, 77(2):439-471. doi: 10.1007/978-3-642-60543-7_14.pdf
|
[21] |
GANDE N R, RATHOD Y, RATHAN S.Third-order WENO scheme with a new smoothness indicator[J].International Journal for Numerical Methods in Fluids, 2017, 85(2):171-185. https://www.researchgate.net/publication/314137535_Third_order_WENO_scheme_with_a_new_smoothness_indicator
|
[22] |
SOD G A.A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J].Journal of Computational Physics, 1978, 27(1):1-31. https://www.sciencedirect.com/science/article/pii/0021999178900232
|
[23] |
SHI J, ZHANG Y T, SHU C W.Resolution of high order WENO schemes for complicated flow structures[J].Journal of Computational Physics, 2003, 186(2):690-696. doi: 10.1016/S0021-9991(03)00094-9
|
[24] |
ACKER F, BORGES R, COSTA B.An improved WENO-Z scheme[J].Journal of Computational Physics, 2016, 313:726-753. doi: 10.1016/j.jcp.2016.01.038
|
[25] |
ZHANG P G, WANG J P.A newly improved WENO scheme and its application to the simulation of Richtmyer-Meshkov instability[J].Procedia Engineering, 2013, 61:325-332. doi: 10.1016/j.proeng.2013.08.023
|
[1] | HUANG Min, ZHU Benhao, XIAO Gesheng, QIAO Li. Simulation on Deformation Damage and Strain Rate Effect of Nb3Sn Composite Superconductors under Cycling Load at Extreme Low Temperature[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 024201. doi: 10.11858/gywlxb.20230755 |
[2] | NIE Feiqing, MA Ruiqiang, LI Zhiqiang. Compressive Properties of Ice Containing Cotton at Low Strain Rates[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034104. doi: 10.11858/gywlxb.20230608 |
[3] | YE Changqing, CHEN Ran, LIU Guisen, LIU Jingnan, HU Jianbo, YU Yuying, WANG Dong, CHEN Kaiguo, SHEN Yao. Crystal Plasticity Finite Element Simulation of Polycrystal Aluminum under Shock Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064203. doi: 10.11858/gywlxb.20220605 |
[4] | ZHANG Xihuang, LI Jinzhu, WU Haijun, HUANG Fenglei. Mechanical Behavior and Failure Mechanism of Glass Fiber Reinforced Plastics under Quasi-Static and Dynamic Compressive Loading[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064105. doi: 10.11858/gywlxb.20210734 |
[5] | WEN Yanbo, HUANG Ruiyuan, LI Ping, MA Jian, XIAO Kaitao. Damage Evolution Equation of Concrete Materials at High Temperatures and High Strain Rates[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024103. doi: 10.11858/gywlxb.20200617 |
[6] | LIU Jingnan, YE Changqing, LIU Guisen, SHEN Yao. Crystal Plasticity Finite Element Theoretical Models and Applications for High Temperature, High Pressure and High Strain-Rate Dynamic Process[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 030102. doi: 10.11858/gywlxb.20190874 |
[7] | MENG Xiangsheng, WU Xiaodong, ZHANG Haiguang. Numerical Simulation on Interlaminar Fracture Toughness of 3D Printed Mortar Laminated Composites[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827 |
[8] | ZHENG Songlin. Advances in the Study of Dynamic Response of Crystalline Materials by Crystal Plasticity Finite Element Modeling[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030108. doi: 10.11858/gywlxb.20190725 |
[9] | LIU Jingnan, YE Changqing, CHEN Kaiguo, YU Yuying, SHEN Yao. Crystal Plasticity Finite Element Simulation of High-Rate Shock Deformation Process of <100> LiF[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 014101. doi: 10.11858/gywlxb.20180551 |
[10] | SONG Min, WANG Zhiyong, YAN Xiaopeng, WANG Zhihua. Numerical Simulation of Responses and Failure Modes of Reinforced Concrete Beams under Drop-Weight Impact Loadings[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 034102. doi: 10.11858/gywlxb.20170693 |
[11] | GAO Guang-Fa. Effect of Strain-Rate Hardening on Dynamic Compressive Strength of Plain Concrete[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 261-270. doi: 10.11858/gywlxb.2017.03.007 |
[12] | GAO Guang-Fa. Hardening Effect of the Strain Rate on the Dynamic Tensile Strength of the Plain Concrete[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 593-602. doi: 10.11858/gywlxb.2017.05.013 |
[13] | WANG Peng-Fei, XU Song-Lin, HU Shi-Sheng. A Constitutive Relation of Aluminum Foam Coupled with Temperature and Strain Rate[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 23-28. doi: 10.11858/gywlxb.2014.01.004 |
[14] | QI Juan, MU Chao-Min. Water Jet Impact on Coal Using Smoothed Particle Hydrodynamics Coupling Standard Finite Element[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 365-372. doi: 10.11858/gywlxb.2014.03.016 |
[15] | JI Chong, LONG Yuan, TANG Xian-Shu, GAO Zhen-Ru, LI Yu-Chun. Local Damage Effects of X70 Steel Pipe Subjected to Contact Explosion Loading[J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 567-574. doi: 10.11858/gywlxb.2013.04.016 |
[16] | PANG Bao-Jun, YANG Zhen-Qi, WANG Li-Wen, CHI Run-Qiang. Dynamic Compression Properties and Constitutive Model with Strain Rate Effect of Rubber Material[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 407-415 . doi: 10.11858/gywlxb.2011.05.005 |
[17] | DENG Rong-Bing, JIN Xian-Long, CHEN Jun, SHEN Jian-Qi, CHEN Xiang-Dong. Application of ALE Multi-Material Formulation for Blast Analysis of Glass Curtain Wall[J]. Chinese Journal of High Pressure Physics, 2010, 24(2): 81-87 . doi: 10.11858/gywlxb.2010.02.001 |
[18] | FU Hua, LIU Cang-Li, WANG Wen-Qiang, LI Tao. A Combined Discrete/Finite Element Method in Shock Dynamics[J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 379-385 . doi: 10.11858/gywlxb.2006.04.007 |
[19] | PENG Jian-Xiang, LI Da-Hong. The Influence of Temperature and Strain Rate on the Flow Stress of Tantalum[J]. Chinese Journal of High Pressure Physics, 2001, 15(2): 146-150 . doi: 10.11858/gywlxb.2001.02.012 |
[20] | LIN Hua-Ling. Simulation of Shock Compression Behavior of Mixture by Using the Finite Element Method[J]. Chinese Journal of High Pressure Physics, 1998, 12(1): 40-46 . doi: 10.11858/gywlxb.1998.01.007 |