Citation: | SONG Min, WANG Zhiyong, YAN Xiaopeng, WANG Zhihua. Numerical Simulation of Responses and Failure Modes of Reinforced Concrete Beams under Drop-Weight Impact Loadings[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 034102. doi: 10.11858/gywlxb.20170693 |
[1] |
OŽBOLT J, RAH K K, MEŠTROVIĈD.Influence of loading rate on concrete cone failure[J].International Journal of Fracture, 2006, 139(2):239-252. doi: 10.1007/s10704-006-0041-3
|
[2] |
TRAVAŠ V, OŽBOLT J, KOŽAR I.Failure of plain concrete beam at impact load:3D finite element analysis[J].International Journal of Fracture, 2009, 160(1):31-41. doi: 10.1007/s10704-009-9400-1
|
[3] |
付应乾, 董新龙.落锤冲击下钢筋混凝土梁响应及破坏的实验研究[J].中国科学:技术科学, 2016, 46(4):400-406. doi: 10.1360/N092015-00337
FU Y Q, DONG X L.An experimental study on impact response and failure behavior of reinforced concrete beam[J].Scientia Sinica:Technological, 2016, 46(4):400-406. doi: 10.1360/N092015-00337
|
[4] |
SAATCI S, VECCHIO F J.Effects of shear mechanisms on impact behavior of reinforced concrete beams[J].ACI Structural Journal, 2009, 106(1):78-86.
|
[5] |
ZHAN T, WANG Z, NING J.Failure behaviors of reinforced concrete beams subjected to high impact loading[J].Engineering Failure Analysis, 2015, 56:233-243. doi: 10.1016/j.engfailanal.2015.02.006
|
[6] |
ZINEDDIN M, KRAUTHAMMER T.Dynamic response and behavior of reinforced concrete slabs under impact loading[J].International Journal of Impact Engineering, 2007, 34(9):1517-1534. doi: 10.1016/j.ijimpeng.2006.10.012
|
[7] |
范向前, 胡少伟.不同配筋率对钢筋混凝土三点弯曲梁断裂韧度的影响[J].水电能源科学, 2013, 31(12):117-121. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sdny201312031&dbname=CJFD&dbcode=CJFQ
FAN X Q, HU S W.Effects of various reinforcement ratio on fracture toughness of reinforced concrete for three-points bending beams[J].Water Resources and Power, 2013, 31(12):117-121. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sdny201312031&dbname=CJFD&dbcode=CJFQ
|
[8] |
沈培峰.配筋率对混凝土断裂参数的影响[J].防灾减灾工程学报, 2013, 33(2):235-240. https://www.researchgate.net/profile/Shaowei_Hu/publication/272609888_Influence_of_Reinforcement_Ratios_on_Concrete_Fracture_Parameters/links/57e1083508ae52b3078c57fe.pdf?origin=publication_list
SHEN P F.Influence of reinforcement ratio on concrete fracture parameters[J].Journal of Disaster Prevention and Mitigation Engineering, 2013, 33(2):235-240. https://www.researchgate.net/profile/Shaowei_Hu/publication/272609888_Influence_of_Reinforcement_Ratios_on_Concrete_Fracture_Parameters/links/57e1083508ae52b3078c57fe.pdf?origin=publication_list
|
[9] |
BANTHIA N, MINDESS S, BENTUR A, et al.Impact testing of concrete using a drop-weight impact machine[J].Experimental March, 1989, 29(1):63-69. doi: 10.1007/BF02327783
|
[10] |
RAO M C, BHATTACHARYYA S K, BARAI S V.Behaviour of recycled aggregate concrete under drop weight impact load[J].Construction and Building Materials, 2011, 25(1):69-80. doi: 10.1016/j.conbuildmat.2010.06.055
|
[11] |
任晓虎, 霍静思, 陈柏生.火灾下钢管混凝土梁落锤冲击试验研究[J].振动与冲击, 2012, 30(20):110-115. https://www.researchgate.net/profile/Jingsi_Huo2/publication/289149807_Anti-impact_behavior_of_concrete-filled_steel_tubular_beams_in_fire/links/5763f27f08ae1658e2ea2074.pdf?origin=publication_detail
REN X H, HUO J S, CHEN B S.Anti-impact behavior of concrete-filled steel tubular beams in fire[J].Journal of Vibration and Shock, 2012, 30(20):110-115. https://www.researchgate.net/profile/Jingsi_Huo2/publication/289149807_Anti-impact_behavior_of_concrete-filled_steel_tubular_beams_in_fire/links/5763f27f08ae1658e2ea2074.pdf?origin=publication_detail
|
[12] |
展婷变, 宁建国, 王志华.冲击载荷下钢筋混凝土力学行为的研究[J].高压物理学报, 2016, 30(2):109-115. doi: 10.11858/gywlxb.2016.02.004
ZHAN T B, NING J G, WANG Z H.Mechanical behavior of reinforced concrete under dynamic loading[J].Chinese Journal of High Pressure Physics, 2016, 30(2):109-115. doi: 10.11858/gywlxb.2016.02.004
|
[13] |
李敏, 李宏男.钢筋混凝土梁动态试验与数值模拟[J].振动与冲击, 2015, 34(6):110-115. http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201506021.htm
LI M, LI H N.Dynamic tests and numerical simulation of reinforced concrete beams[J].Journal of Vibration and Shock, 2015, 34(6):110-115. http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201506021.htm
|
[14] |
JIANG H, WANG X, HE S.Numerical simulation of impact tests on reinforced concrete beams[J].Materials and Design, 2012, 39(15):111-120. https://www.sciencedirect.com/science/article/pii/S0261306912000751
|
[15] |
刘巍, 徐明, 陈忠范.ABAQUS混凝土损伤塑性模型参数标定及验证[J].工业建筑, 2014(增刊1):167-171. http://www.docin.com/p-1535116684.html
LIU W, XU M, CHEN Z F.Parameters calibration and verification of concrete damage plasticity model of ABAQUS[J].Industrial Construction, 2014(Suppl 1):167-171. http://www.docin.com/p-1535116684.html
|
[16] |
林峰, 顾祥林, 匡昕昕, 等.高应变率下建筑钢筋的本构模型[J].建筑材料学报, 2008, 11(1):14-20. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_jzclxb200801003
LIN F, GU X L, KUANG X X, et al.Constitutive models for reinforcing steel bars under high strain rates[J].Journal of Building Materials, 2008, 11(1):14-20. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_jzclxb200801003
|
[17] |
中国建筑科学研究院. 混凝土设计规范: GB 50010-2010[S]. 北京: 中国建筑工业出版社, 2010.
|
[1] | HUANG Min, ZHU Benhao, XIAO Gesheng, QIAO Li. Simulation on Deformation Damage and Strain Rate Effect of Nb3Sn Composite Superconductors under Cycling Load at Extreme Low Temperature[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 024201. doi: 10.11858/gywlxb.20230755 |
[2] | NIE Feiqing, MA Ruiqiang, LI Zhiqiang. Compressive Properties of Ice Containing Cotton at Low Strain Rates[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034104. doi: 10.11858/gywlxb.20230608 |
[3] | YE Changqing, CHEN Ran, LIU Guisen, LIU Jingnan, HU Jianbo, YU Yuying, WANG Dong, CHEN Kaiguo, SHEN Yao. Crystal Plasticity Finite Element Simulation of Polycrystal Aluminum under Shock Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064203. doi: 10.11858/gywlxb.20220605 |
[4] | ZHANG Xihuang, LI Jinzhu, WU Haijun, HUANG Fenglei. Mechanical Behavior and Failure Mechanism of Glass Fiber Reinforced Plastics under Quasi-Static and Dynamic Compressive Loading[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064105. doi: 10.11858/gywlxb.20210734 |
[5] | WEN Yanbo, HUANG Ruiyuan, LI Ping, MA Jian, XIAO Kaitao. Damage Evolution Equation of Concrete Materials at High Temperatures and High Strain Rates[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024103. doi: 10.11858/gywlxb.20200617 |
[6] | LIU Jingnan, YE Changqing, LIU Guisen, SHEN Yao. Crystal Plasticity Finite Element Theoretical Models and Applications for High Temperature, High Pressure and High Strain-Rate Dynamic Process[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 030102. doi: 10.11858/gywlxb.20190874 |
[7] | MENG Xiangsheng, WU Xiaodong, ZHANG Haiguang. Numerical Simulation on Interlaminar Fracture Toughness of 3D Printed Mortar Laminated Composites[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044206. doi: 10.11858/gywlxb.20190827 |
[8] | ZHENG Songlin. Advances in the Study of Dynamic Response of Crystalline Materials by Crystal Plasticity Finite Element Modeling[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030108. doi: 10.11858/gywlxb.20190725 |
[9] | LIU Jingnan, YE Changqing, CHEN Kaiguo, YU Yuying, SHEN Yao. Crystal Plasticity Finite Element Simulation of High-Rate Shock Deformation Process of <100> LiF[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 014101. doi: 10.11858/gywlxb.20180551 |
[10] | SONG Min, WANG Zhiyong, YAN Xiaopeng, WANG Zhihua. Numerical Simulation of Responses and Failure Modes of Reinforced Concrete Beams under Drop-Weight Impact Loadings[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 034102. doi: 10.11858/gywlxb.20170693 |
[11] | GAO Guang-Fa. Effect of Strain-Rate Hardening on Dynamic Compressive Strength of Plain Concrete[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 261-270. doi: 10.11858/gywlxb.2017.03.007 |
[12] | GAO Guang-Fa. Hardening Effect of the Strain Rate on the Dynamic Tensile Strength of the Plain Concrete[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 593-602. doi: 10.11858/gywlxb.2017.05.013 |
[13] | WANG Peng-Fei, XU Song-Lin, HU Shi-Sheng. A Constitutive Relation of Aluminum Foam Coupled with Temperature and Strain Rate[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 23-28. doi: 10.11858/gywlxb.2014.01.004 |
[14] | QI Juan, MU Chao-Min. Water Jet Impact on Coal Using Smoothed Particle Hydrodynamics Coupling Standard Finite Element[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 365-372. doi: 10.11858/gywlxb.2014.03.016 |
[15] | JI Chong, LONG Yuan, TANG Xian-Shu, GAO Zhen-Ru, LI Yu-Chun. Local Damage Effects of X70 Steel Pipe Subjected to Contact Explosion Loading[J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 567-574. doi: 10.11858/gywlxb.2013.04.016 |
[16] | PANG Bao-Jun, YANG Zhen-Qi, WANG Li-Wen, CHI Run-Qiang. Dynamic Compression Properties and Constitutive Model with Strain Rate Effect of Rubber Material[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 407-415 . doi: 10.11858/gywlxb.2011.05.005 |
[17] | DENG Rong-Bing, JIN Xian-Long, CHEN Jun, SHEN Jian-Qi, CHEN Xiang-Dong. Application of ALE Multi-Material Formulation for Blast Analysis of Glass Curtain Wall[J]. Chinese Journal of High Pressure Physics, 2010, 24(2): 81-87 . doi: 10.11858/gywlxb.2010.02.001 |
[18] | FU Hua, LIU Cang-Li, WANG Wen-Qiang, LI Tao. A Combined Discrete/Finite Element Method in Shock Dynamics[J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 379-385 . doi: 10.11858/gywlxb.2006.04.007 |
[19] | PENG Jian-Xiang, LI Da-Hong. The Influence of Temperature and Strain Rate on the Flow Stress of Tantalum[J]. Chinese Journal of High Pressure Physics, 2001, 15(2): 146-150 . doi: 10.11858/gywlxb.2001.02.012 |
[20] | LIN Hua-Ling. Simulation of Shock Compression Behavior of Mixture by Using the Finite Element Method[J]. Chinese Journal of High Pressure Physics, 1998, 12(1): 40-46 . doi: 10.11858/gywlxb.1998.01.007 |