Citation: | QIN Jincheng, PEI Hongbo, LI Xinghan, ZHANG Xu, ZHAO Feng. Shock Initiation Thresholds of Heterogeneous Explosives with Elastic-Visco-Plastic Hot Spot Model[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035202. doi: 10.11858/gywlxb.20170656 |
[1] |
孙锦山, 朱建士.理论爆轰物理[M].北京:国防工业出版社, 1995:332-334.
SUN J S, ZHU J S.Theoretical detonation physics[M].Beijing:National Defense Industry Press, 1995:332-334.
|
[2] |
RIDEAL E K, ROBERTSON A J B.The sensitiveness of solid high explosives to impact[J].Proceedings of the Royal Society A, 1948, 195(1041):135-150. doi: 10.1098/rspa.1948.0108
|
[3] |
BODDINGTON T.The growth and decay of hot spots and the relation between structure and stability[J].Symposium on Combustion, 1963, 9(1):287-293. doi: 10.1016/S0082-0784(63)80036-3
|
[4] |
THOMAS P H.An approximate theory of "hot spot" critically[J].Combustion and Flame, 1973, 21(1):99-109. doi: 10.1016/0010-2180(73)90011-4
|
[5] |
WALKER F E, WASLEY R J.Critical energy for shock initiation of heterogeneous explosives[J].Explosive Stoffe, 1969, 17(1):9-13. http://www.worldcat.org/title/critical-energy-for-shock-initiation-of-heterogeneous-explosives/oclc/829388221
|
[6] |
章冠人.瞬时加热热点的近似临界理论[J].爆炸与冲击, 1982, 2(3):53-60. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bzcj201701008&dbname=CJFD&dbcode=CJFQ
ZHANG G R.An approximate theory of criticality of "hot spot" of instantaneous addition of heat[J].Explosion and Shock Waves, 1982, 2(3):53-60. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bzcj201701008&dbname=CJFD&dbcode=CJFQ
|
[7] |
章冠人.粘弹塑性热点燃烧模型的冲击起爆理论[J].爆炸与冲击, 1988, 8(3):20-24. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bzcj198803002&dbname=CJFD&dbcode=CJFQ
ZHANG G R.Theory of initiation of hot spot in heterogeneous explosive with visco-elastic-plastic and combustion model[J].Explosion and Shock Waves, 1988, 8(3):20-24. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bzcj198803002&dbname=CJFD&dbcode=CJFQ
|
[8] |
胡双启, 谭迎新, 张景林.凝聚炸药的冲击起爆[J].中国安全科学学报, 1995, 5(4):57-61. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zaqk504.013&dbname=CJFD&dbcode=CJFQ
HU S Q, TAN Y X, ZHANG J L.Shock initiation of heterogeneous explosive[J].China Safety Science Journal, 1995, 5(4):57-61. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zaqk504.013&dbname=CJFD&dbcode=CJFQ
|
[9] |
PETER J H, MALCOLM D C. A modified criterion for the prediction of shock initiation thresholds for flyer plate and rod impacts[C]//14th International Detonation Symposium. Coeur d'Alene, ID, 2010: 199-207. https://www.researchgate.net/publication/286659234_A_modified_{\rm{c}}riterion_for_the_prediction_{\rm{o}}f_shock_{\rm{i}}nitiation_thresholds_for_flyer_plate_and_rod_{\rm{i}}mpacts
|
[10] |
LOBOIKO B G, LUBYATINSKY S N.Reaction zones of detonating solid explosives[J].Combustion Explosion & Shock Waves, 2000, 36(6):716-733. doi: 10.1023/A:1002898505288
|
[11] |
CARROLL M M, HOLT A C.Static and dynamic pore-collapse relations for ductile porous materials[J].Journal of Applied Physics, 1972, 43(4):1626-1636. doi: 10.1063/1.1661372
|
[12] |
KIM K, SOHN C H. Modeling of reaction buildup processes in shock porous explosive[C]//8th International Symposium on Detonation. Albuquerque, NM, 1985: 926-933.
|
[13] |
LEE E L, TARVER C M.Phenomenological model of shock of shock initiation in heterogeneous explosives[J].Physics of Fluids, 1980, 23(12):2362-2372. doi: 10.1063/1.862940
|
[14] |
GARCIA M L, TARVER C M. Three-dimensional ignition and growth reactive flow modeling of prism failure tests on PBX 9502[C]//13th International Detonation Symposium. Norfolk, VA, 2006: 164-169. https://digital.library.unt.edu/ark:/67531/metadc888313/
|
[15] |
章冠人, 陈大年, 凝聚炸药起爆动力学[M].北京:国防工业出版社, 1991:129-130.
ZHANG G R, CHEN D N.Condensed explosive initiation dynamics[M].Beijing:National Defense Industry Press, 1991:129-130.
|
[16] |
张震宇, 田占东, 陈军, 等.爆轰物理[M].长沙:国防工业出版社, 2016:206-207.
ZHANG Z Y, TIAN Z D, CHEN J, et al.Detonation physics[M].Changsha:National Defense Industry Press, 2016:206-207.
|
[17] |
LIU Y R, DUAN Z P, ZHANG Z Y, et al.A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives[J].Journal of Hazardous Materials, 2016, 317:44-51. doi: 10.1016/j.jhazmat.2016.05.052
|
[18] |
HOFFMAN D M.Mechanical mocks for insensitive high explosives[J].Journal of Energetic Materials, 2003, 21(4):201-222. doi: 10.1080/713770433
|
[1] | PENG Ao, ZHANG Jingwen, CHEN Xianfeng, SUN Xuxu. A Numerical Study on the Effect of Ignition Pattern on Wavelet Features in Rotating Detonation Waves[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 062301. doi: 10.11858/gywlxb.20220593 |
[2] | LI Jinlin, JIANG Jianwei, MEN Jianbing, WANG Shuyou, LI Mei. Numerical Simulation of the Structure of Composite Liner to Enhance After-Effect[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 015102. doi: 10.11858/gywlxb.20210785 |
[3] | LIU Jinghan, TANG Ting, WEI Zhuobin, YU Xiaocun, LI Lingfeng, ZHANG Yuanhao. Pressure Characteristics of Shallow Water Explosion near the Rigid Column[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055104. doi: 10.11858/gywlxb.20180704 |
[4] | WAN Qinghua, LI Rujiang, YANG Yue, SUN Jianjun, ZHANG Ming, SUN Miao. Numerical Simulation of Interference Effect of Multi Sandwich Structure Reaction Armor to Jet[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 065107. doi: 10.11858/gywlxb.20180571 |
[5] | LIU Yingbin, SHI Junlei, HU Xiaoyan, SUN Miao, ZHANG Ming, DUAN Xiaochang. Numerical Simulation of Disturbance by Double-Layer Explosive Reactive Armor with Wedged Flying-Plate on Jet[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 045105. doi: 10.11858/gywlxb.20170620 |
[6] | ZHANG Ming, GAO Yonghong, YANG Yue, SUN Jiangjun, WAN Qinghua, SUN Miao, ZHANG Wei. Effect of Impact Points on Interfering Jets in Reactive Armor of Double-Wedge Charges[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 065109. doi: 10.11858/gywlxb.20180577 |
[7] | LI Biaobiao, WANG Hui, YUAN Baohui. Study on the Attenuation Effect of Water Protection Layer on the Velocity of Jet Tip[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035105. doi: 10.11858/gywlxb.20170691 |
[8] | SUN Jianjun, LI Rujiang, WAN Qinghua, ZHANG Ming, YANG Yue, SUN Miao. Numerical Simulation of Protective Envelope of Explosive Reaction Armor[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 055106. doi: 10.11858/gywlxb.20180523 |
[9] | ZHAI Zhi-Gang, DONG Ping, LUO Xi-Sheng. Experimental Investigation on Richtmyer-Meshkov Instability of a "V" Shaped Interface Subjected to Shock Wave[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 718-726. doi: 10.11858/gywlxb.2017.06.006 |
[10] | WANG Feng-Ying, YUE Ji-Wei, WANG Zhi-Yuan, RUAN Guang-Guang, CHAI Yan-Jun. Interference Effect of Multi-Layered Reactive Armor with a Variable Angle on Shaped Charge Jet[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 566-572. doi: 10.11858/gywlxb.2017.05.009 |
[11] | YAN Ke-Bin, HUANG Zheng-Xiang, LIU Rong-Zhong. Numerical and Experimental Research on Ceramic/Rubber/Steel Composite Armor Penetrated by Jet[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 467-472. doi: 10.11858/gywlxb.2014.04.013 |
[12] | ZHANG Zhong-Wen, HUANG Zheng-Xiang, ZU Xu-Dong, JIA Xin. Study on the Effects of Composite Armor with Corrugated Sandwich against the Shaped Charge Jet Penetration[J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 928-935. doi: 10.11858/gywlxb.2013.06.021 |
[13] | SUN Li-Zhi, LI Zhi-Yuan, Lü Qing-Ao. Numerical Simulation on Shaped Charge Jet Being Disturbed by Shearing Movement of Four-Layer Spaced Plates[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 423-430. doi: 10.11858/gywlxb.2013.03.017 |
[14] | HUANG Chao, WANG Bin, LIU Cang-Li, ZHANG A-Man, YAO Xiong-Liang. On the Mechanism of Non-spherical Underwater Explosion Bubble Collapse[J]. Chinese Journal of High Pressure Physics, 2012, 26(5): 501-507. doi: 10.11858/gywlxb.2012.05.004 |
[15] | CUI-Jie, LI Shi-Ming, HUANG Chao, YAO Xiong-Liang, ZHANG A-Man. Application Research of Jet Impact-Model in an Underwater Explosion Experiment[J]. Chinese Journal of High Pressure Physics, 2012, 26(5): 523-530. doi: 10.11858/gywlxb.2012.05.007 |
[16] | CHEN Hao, TAO Gang. Temperature Change and Microstructure Evolution of the Bore Penetrated by Copper Jets[J]. Chinese Journal of High Pressure Physics, 2011, 25(4): 344-350 . doi: 10.11858/gywlxb.2011.04.010 |
[17] | LI Jian, RONG Ji-Li. Numerical Study on Bubble Motion near the Wall[J]. Chinese Journal of High Pressure Physics, 2010, 24(3): 168-174 . doi: 10.11858/gywlxb.2010.03.002 |
[18] | TAN Duo-Wang, SUN Cheng-Wei. Analytical Model for Jet Formation in Shaped Charge with Wide Cone Angle[J]. Chinese Journal of High Pressure Physics, 2006, 20(3): 270-276 . doi: 10.11858/gywlxb.2006.03.008 |
[19] | TAN Duo-Wang, SUN Cheng-Wei, ZHAO Ji-Bo, ZHANG Ke-Ming, XIE Pan-Hai. Experimental Investigation of Shaped Charge with Large Cone Angle[J]. Chinese Journal of High Pressure Physics, 2003, 17(3): 204-208 . doi: 10.11858/gywlxb.2003.03.008 |
[20] | TAN Duo-Wang, XIE Pan-Hai. Experimental Studies of Alumina Ceramic against a Shaped-Charge Jet Penetration[J]. Chinese Journal of High Pressure Physics, 1997, 11(2): 145-149 . doi: 10.11858/gywlxb.1997.02.012 |