Citation: | CHANG Shaomei. Mechanical and Thermodynamic Properties for Cubic BC3 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 021101. doi: 10.11858/gywlxb.20170640 |
[1] |
HAINES J, LÉGER J M, BOCQUILLON G.Synthesis and design of superhard materials[J]. Annual Review of Materials Research, 2001, 31(1):1-23. doi: 10.1146/annurev.matsci.31.1.1
|
[2] |
TIAN Y, XU B, ZHAO Z.Microscopic theory of hardness and design of novel superhard crystals[J]. International Journal of Refractory Metals and Hard Materials, 2012, 33:93-106. doi: 10.1016/j.ijrmhm.2012.02.021
|
[3] |
NOVIKOV N V.Synthesis of superhard materials[J]. Journal of Materials Processing Technology, 2005, 161(1):169-172. https://www.sciencedirect.com/science/article/pii/S0924013604009094
|
[4] |
SOLOZHENKO V L, GREGORYANZ E.Synthesis of superhard materials[J]. Materials Today, 2005, 8(11):44-51. doi: 10.1016/S1369-7021(05)71159-7
|
[5] |
NOVIKOV N V, DUB S N.Fracture toughness of diamond single crystals[J]. Journal of Hard Materials, 1991, 2(1):3-11. https://www.researchgate.net/publication/284697397_Fracture_toughness_of_diamond_single_crystals
|
[6] |
SOLOZHENKO V L, DUB S N, NOVIKOV N V.Mechanical properties of cubic BC2N, a new superhard phase[J]. Diamond and Related Materials, 2001, 10(12):2228-2231. doi: 10.1016/S0925-9635(01)00513-1
|
[7] |
ZININ P V, MING L C, ISHⅡ H A, et al.Phase transition in BCx system under high-pressure and high-temperature:synthesis of cubic dense BC3 nanostructured phase[J]. Journal of Applied Physics, 2012, 111(11):114905. doi: 10.1063/1.4723275
|
[8] |
SOLOZHENKO V L, KURAKEVYCH O O, ANDRAULT D, et al.Ultimate metastable solubility of boron in diamond:synthesis of superhard diamondlike BC5[J]. Physical Review Letters, 2009, 102(1):015506. doi: 10.1103/PhysRevLett.102.015506
|
[9] |
SOLOZHENKO V L, ANDRAULT D, FIQUET G, et al.Synthesis of superhard cubic BC2N[J]. Applied Physics Letters, 2001, 78(10):1385-1387. doi: 10.1063/1.1337623
|
[10] |
BADZIAN A R.Superhard material comparable in hardness to diamond[J]. Applied Physics Letters, 1988, 53(25):2495-2497. doi: 10.1063/1.100528
|
[11] |
CHUNG H Y, WEINBERGER M B, LEVINE J B, et al.Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure[J]. Science, 2007, 316(5823):436-439. doi: 10.1126/science.1139322
|
[12] |
GOU H, DUBROVINSKAIA N, BYKOVA E, et al.Discovery of a superhard iron tetraboride superconductor[J]. Physical Review Letters, 2013, 111(15):157002. doi: 10.1103/PhysRevLett.111.157002
|
[13] |
CROWHURST J C, GONCHAROV A F, SADIGH B, et al.Synthesis and characterization of the nitrides of platinum and iridium[J]. Science, 2006, 311(5765):1275-1278. doi: 10.1126/science.1121813
|
[14] |
KUMAR N R S, CHANDRA S, AMIRTHAPANDIAN S, et al.Investigations of the high pressure synthesized osmium carbide by experimental and computational techniques[J]. Materials Research Express, 2015, 2(1):016503. doi: 10.1088/2053-1591/2/1/016503
|
[15] |
DOMNICH V, REYNAUD S, HABER R A, et al.Boron carbide:structure, properties, and stability under stress[J]. Journal of the American Ceramic Society, 2011, 94(11):3605-3628. doi: 10.1111/jace.2011.94.issue-11
|
[16] |
GLASS C W, OGANOV A R, HANSEN N.Uspex-evolutionary crystal structure prediction[J]. Computer Physics Communications, 2006, 175(11):713-720.
|
[17] |
LYAKHOV A O, OGANOV A R, STOKES H T, et al.New developments in evolutionary structure prediction algorithm uspex[J]. Computer Physics Communications, 2013, 184(4):1172-1182. doi: 10.1016/j.cpc.2012.12.009
|
[18] |
WANG Y, LV J, ZHU L, et al.CALYPSO:a method for crystal structure prediction[J]. Computer Physics Communications, 2012, 183(10):2063-2070. doi: 10.1016/j.cpc.2012.05.008
|
[19] |
ZHANG M, LIU H, LI Q, et al.Superhard BC3 in cubic diamond structure[J]. Physical Review Letters, 2015, 114(1):015502. doi: 10.1103/PhysRevLett.114.015502
|
[20] |
KRESSE G, FURTHMVLLER J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16):11169-11186. doi: 10.1103/PhysRevB.54.11169
|
[21] |
PERDEW J P, BURKE K, ERNZERHOF M.Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865
|
[22] |
KRESSE G, JOUBERT D.From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3):1758-1775. doi: 10.1103/PhysRevB.59.1758
|
[23] |
HILL R.The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society Section A, 1952, 65(5):349-354. doi: 10.1088/0370-1298/65/5/307
|
[24] |
OTERO-DE-LA-ROZA A, LUAÑA V.Gibbs 2:a new version of the quasi-harmonic model code.Ⅰ.robust treatment of the static data[J]. Computer Physics Communications, 2011, 182(8):1708-1720. doi: 10.1016/j.cpc.2011.04.016
|
[25] |
BIRCH F.Finite elastic strain of cubic crystals[J]. Physical Review, 1947, 71(11):809-824. doi: 10.1103/PhysRev.71.809
|
[26] |
MOUHAT F, COUDERT F X.Necessary and sufficient elastic stability conditions in various crystal systems[J]. Physical Review B, 2014, 90(22):224104. doi: 10.1103/PhysRevB.90.224104
|
[27] |
WU Z, ZHAO E, XIANG H, et al.Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles[J]. Physical Review B, 2007, 76(5):054115. doi: 10.1103/PhysRevB.76.054115
|
[28] |
ZHANG R F, VEPREK S, ARGON A S.Anisotropic ideal strengths and chemical bonding of wurtzite BN in comparison to zincblende BN[J]. Physical Review B, 2008, 77(17):998-1002.
|
[29] |
WANG Y J, WANG C Y.Mechanical properties and electronic structure of superhard diamondlike BC5:a first-principles study[J]. Journal of Applied Physics, 2009, 106(4):043513. doi: 10.1063/1.3195082
|
[30] |
ZHANG R F, LIN Z J, VEPREK S.Anisotropic ideal strengths of superhard monoclinic and tetragonal carbon and their electronic origin[J]. Physical Review B, 2011, 83(15):4400-4408.
|
[31] |
CAZZANI A, ROVATI M.Extrema of Young's modulus for cubic and transversely isotropic solids[J]. International Journal of Solids and Structures, 2003, 40(7):1713-1744. doi: 10.1016/S0020-7683(02)00668-6
|
[32] |
KLEIN C A.Anisotropy of Young's modulus and Poisson's ratio in diamond[J]. Materials Research Bulletin, 1992, 27(12):1407-1414. doi: 10.1016/0025-5408(92)90005-K
|
[33] |
ZHENG B, ZHANG M, LUO H G.Pressure effect on structural, elastic, and thermodynamic properties of tetragonal B4C4[J]. AIP Advances, 2015, 5(3):436-439. http://www.osti.gov/scitech/biblio/22454476
|
[1] | LIU Yushi, ZHANG Long, LI Wenguang, LIU Qijun, LIU Zhengtang, LIU Fusheng. First-Principles Investigation of the High-Pressure Phase Transition in Representative Alkali Metal Halides[J]. Chinese Journal of High Pressure Physics, 2025, 39(2): 022201. doi: 10.11858/gywlxb.20240864 |
[2] | CHEN Weishan, TAN Yi, TAN Dayong, XIAO Wansheng. First-Principles Theoretical Study on the Structure Behaviors of NaPO3 under Compression[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 050106. doi: 10.11858/gywlxb.20240755 |
[3] | MA Hao, CHEN Ling, JIANG Qiwen, AN Decheng, DUAN Defang. Ab Initio Calculation Principles Study of Crystal Structure and Superconducting Properties of Y-Si-H System under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020106. doi: 10.11858/gywlxb.20230791 |
[4] | WANG Xiaoxue, DING Yuqing, WANG Hui. First-Principles Study of the High-Pressure Phase Transition and Physical Properties of Rubidium Nitrate[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040103. doi: 10.11858/gywlxb.20240776 |
[5] | WANG Xiaoxue, DING Yuqing, WANG Hui. First-Principles Study of the Dynamics in Face-Centered Cubic CeH9 and CeH10 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020109. doi: 10.11858/gywlxb.20230771 |
[6] | LI Zuo, LIU Yun, LIAO Dalin, CHENG Lihong. First-Principles Study on Structural, Electronic and Optical Properties of G2ZT Crystal under High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 042202. doi: 10.11858/gywlxb.20220514 |
[7] | ZHANG Chang, SUN Xiaowei, SONG Ting, TIAN Junhong, LIU Zijiang. First-Principles Study on Mechanical Properties of Sc, Ti, V, Zr-Doped Cr2B3 at High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 042201. doi: 10.11858/gywlxb.20210916 |
[8] | LIU Chao, YING Pan. Mechanism of Pressure and Carbon Content Regulating Physical Properties of BCxO Compounds[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 061101. doi: 10.11858/gywlxb.20210792 |
[9] | WEN Xinzhu, PENG Yuyan, LIU Mingzhen. First-Principles Study on Structural Stability of Perovskite ZrBeO3[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 011202. doi: 10.11858/gywlxb.20190802 |
[10] | MA Chaojie, WU Xiao, MA Yangyang, HE Kaihua, JI Guangfu. Effect of Spin Transition of Iron on Thermodynamic Properties of Magnesiosiderite[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 022201. doi: 10.11858/gywlxb.20190862 |
[11] | GENG Huayun, SUN Yi, XIANG Shikai. Computation and Simulation of High-Pressure Properties of Complex Materials: A Brief Review on the Methods Based on First-Principles[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030102. doi: 10.11858/gywlxb.20190710 |
[12] | YANG Longxing, LIU Lei, LIU Hong, YI Li, GU Xiaoyu. Structure and Elasticity of Garnet under High Pressure by First-Principles Simulation[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060104. doi: 10.11858/gywlxb.20190785 |
[13] | LIU Siyuan, MIAO Yu, MA Xuejiao, LI Xin, GAO Wenquan, CHENG Yuheng, LIU Yanhui. Pressure-Induced Phase Transformations of IrSb from First-Principles Calculations[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 052203. doi: 10.11858/gywlxb.20190716 |
[14] | ZHANG Leting, ZHAO Yuhong, SUN Yuanyang, DENG Shijie, JI Ruyi, HAN Peide. Thermodynamic Properties of Mg2X (X=Si, Ge) Phases under Pressure by First-Principles Calculations[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 032201. doi: 10.11858/gywlxb.20170630 |
[15] | REN Xiao-Guang, CUI Xue-Han, WU Bao-Jia, GU Guang-Rui. Electronic Structure and Lattice Dynamics of Intermetallic Compounds CaAlSi at High-Pressure[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 161-167. doi: 10.11858/gywlxb.2014.02.005 |
[16] | DING Ying-Chun, LIU Hai-Jun, JIANG Meng-Heng, CHEN Min, CHEN Yong-Ming. First-Principles Investigations on Structural Transformation and Electronic Properties of BeP2N4 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 674-680. doi: 10.11858/gywlxb.2012.06.012 |
[17] | HAO Ai-Min, ZHOU Tie-Jun, ZHU Yan, LIU Xin. First-Principles Investigations on Structure Transformation, Elastic and Thermodynamic Properties of TiN under High Pressure[J]. Chinese Journal of High Pressure Physics, 2012, 26(4): 395-401. doi: 10.11858/gywlxb.2012.04.006 |
[18] | HAO Jun-Hua, WU Zhi-Qiang, WANG Zheng, JIN Qing-Hua, LI Bao-Hui, DING Da-Tong. First Principles Calculation of SiO2 at High Pressures[J]. Chinese Journal of High Pressure Physics, 2010, 24(4): 260-266 . doi: 10.11858/gywlxb.2010.04.004 |
[19] | YANG Xiao-Cui, ZHAO Yu-Wei, GAO Zhong-Ming, LIU Xin, ZHANG Li-Xin, WANG Xiao-Ming, HAO Ai-Min. First-Principles Study of Structural Stabilities, Electronic and Optical Properties of CaF2 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2010, 24(3): 225-230 . doi: 10.11858/gywlxb.2010.03.011 |
[20] | LIU Hong, WEI Dong-Qing, ZHAO Ji-Jun, GUO Yong-Xin, GONG Zi-Zheng. Molecular Dynamic Study of Liquid Nitromethane under High-Pressure[J]. Chinese Journal of High Pressure Physics, 2004, 18(4): 319-327 . doi: 10.11858/gywlxb.2004.04.006 |