Volume 32 Issue 1
Dec 2017
Turn off MathJax
Article Contents
LI Zihe, LIU Chao, MA Mengdong, PAN Yilong, ZHAO Zhisheng, YU Dongli, HE Julong. Structure and Properties of Novel Superhard C5N:A First-Principles Study[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010103. doi: 10.11858/gywlxb.20170606
Citation: LI Zihe, LIU Chao, MA Mengdong, PAN Yilong, ZHAO Zhisheng, YU Dongli, HE Julong. Structure and Properties of Novel Superhard C5N:A First-Principles Study[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010103. doi: 10.11858/gywlxb.20170606

Structure and Properties of Novel Superhard C5N:A First-Principles Study

doi: 10.11858/gywlxb.20170606
Funds:

National Natural Science Foundation of China 51421091

National Natural Science Foundation of China 51332005

More Information
  • Author Bio:

    LI Zihe(1990—), male, doctoral student, major in research of metastable materials.E-mail:lizihelegend@163.com

  • Corresponding author: HE Julong(1958—), male, doctor, professor, major in research of metastable materials.E-mail:hjl@ysu.edu.cn
  • Received Date: 29 Jun 2017
  • Rev Recd Date: 08 Jul 2017
  • By using the developed particle swarm optimization algorithm on the crystal structural prediction, we proposed 6 novel carbon nitride phases with a 5:1 stoichiometry.Their structures, stability, mechanical and electronic properties were investigated by first-principle calculations with the density functional theory.Our calculations indicate that P62m-C5N is energetically favorable in the 6 structures.Both elastic constants and phonon-dispersion calculations show that these structures remain mechanically and dynamically stable at 0 GPa.Electronic calculations indicate that I41-C5N is metallic while the other 5 are semiconductive.The Vickers hardness shows that all the 6 structures are superhard materials except for I41-C5N.Formation enthalpy calculations suggest that these 6 structures can be synthesized at attainable high pressures (19-83 GPa).

     

  • loading
  • [1]
    LÉGER J-M, HAINES J.The search for superhard materials[J]. Endeavour, 1997, 21(3):121-124. doi: 10.1016/S0160-9327(97)80221-9
    [2]
    LIU A Y, COHEN M L.Prediction of new low compressibility solids[J]. Science, 1989, 245(4920):841-842. doi: 10.1126/science.245.4920.841
    [3]
    LIU A Y, COHEN M L.Structural properties and electronic structure of low-compressibility materials:β-Si3N4 and hypothetical β-C3N4[J]. Physical Review B, 1990, 41(15):10727-10734. doi: 10.1103/PhysRevB.41.10727
    [4]
    CÔTÉAND M, COHEN M L.Carbon nitride compounds with 1:1 stoichiometry[J]. Physical Review B, 1997, 55(9):5684. doi: 10.1103/PhysRevB.55.5684
    [5]
    HALES J, BARNARD A S.Thermodynamic stability and electronic structure of small carbon nitride nanotubes[J]. Journal of Physics:Condensed Matter, 2009, 21(14):144203. doi: 10.1088/0953-8984/21/14/144203
    [6]
    KIM E, CHEN C, KÖHLER T, et al.Tetragonal crystalline carbon nitrides:theoretical predictions[J]. Physical Review Letters, 2001, 86(4):652-655. doi: 10.1103/PhysRevLett.86.652
    [7]
    KIM E, CHEN C.Stability of tetragonal crystalline carbon nitrides:the nitrogen content dependence[J]. Physics Letters A, 2001, 282(6):415-420. doi: 10.1016/S0375-9601(01)00200-6
    [8]
    HART J N, CLAEYSSENS F, ALLAN N L, et al.Carbon nitride:ab initio investigation of carbon-rich phases[J]. Physical Review B, 2009, 80(17):174111. doi: 10.1103/PhysRevB.80.174111
    [9]
    SANDRÉ É, PICKARD C J, COLLIEX C.What are the possible structures for CNx ompounds?The example of C3N[J]. Chemical Physics Letters, 2000, 325(1/2/3):53-60. http://www.sciencedirect.com/science/article/pii/S000926140000539X
    [10]
    TIAN F, WANG J, HE Z, et al.Superhard semiconducting C3N2 compounds predicted via first-principles calculations[J]. Physical Review B, 2008, 78(23):235431. doi: 10.1103/PhysRevB.78.235431
    [11]
    WANG X.Polymorphic phases of sp3-hybridized superhard CN[J]. The Journal of Chemical Physics, 2012, 137(18):184506. doi: 10.1063/1.4765324
    [12]
    ZHANG M, WEI Q, YAN H, et al.A novel superhard tetragonal carbon mononitride[J]. The Journal of Physical Chemistry C, 2014, 118(6):3202-3208. doi: 10.1021/jp409152t
    [13]
    LI Q, LIU H, ZHOU D, et al.A novel low compressible and superhard carbon nitride:body-centered tetragonal CN2[J]. Physical Chemistry Chemical Physics, 2012, 14(37):13081-13087. doi: 10.1039/c2cp41694h
    [14]
    XU Y, GAO S P.Band gap of C3N4 in the GW approximation[J]. International Journal of Hydrogen Energy, 2012, 37(15):11072-11080. doi: 10.1016/j.ijhydene.2012.04.138
    [15]
    GUO L P, CHEN Y, WANG E G, et al.Identification of a new tetragonal C-N phase[J]. Journal of Crystal Growth, 1997, 178(4):639-644. doi: 10.1016/S0022-0248(96)01067-6
    [16]
    SEKINE T, KANDA H, BANDO Y, et al.A graphitic carbon nitride[J]. Journal of Materials Science Letters, 1990, 9(12):1376-1378. doi: 10.1007/BF00721588
    [17]
    STEVENS A J, KOGA T, AGEE C B, et al.Stability of carbon nitride materials at high pressure and temperature[J]. Journal of the American Chemical Society, 1996, 118(44):10900-10901. doi: 10.1021/ja9625182
    [18]
    STEVENS A J, AGEE C B, LIEBER C M. High-pressure chemistry of carbon nitride materials[J/OL]. MRS Online Proceedings Library, 1997, 499: 309(2011-02-01)[2017-06-29]. https://doi.org/10.1557/PROC-499-309.
    [19]
    CHEN Y A, GUO L, WANG E G.Alpha beta experimental evidence for alpha-and beta-phases of pure crystalline C3N4 in films deposited on nickel substrates[J]. Philosophical Magazine Letters, 1997, 75(3):155-162. doi: 10.1080/095008397179714
    [20]
    NIU C, LU Y Z, LIEBER C M.Experimental realization of the covalent solid carbon nitride[J]. Science, 1993, 261(5119):334-337. doi: 10.1126/science.261.5119.334
    [21]
    YU K M, COHEN M L, HALLER E E, et al.Observation of crystalline C3N4[J]. Physical Review B, 1994, 49(7):5034-5037. doi: 10.1103/PhysRevB.49.5034
    [22]
    YIN L W, LI M S, LIU Y X, et al.Synthesis of beta carbon nitride nanosized crystal through mechanochemical reaction[J]. Journal of Physics:Condensed Matter, 2003, 15(2):309-314. doi: 10.1088/0953-8984/15/2/330
    [23]
    GUO Q, XIE Y, WANG X, et al.Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures[J]. Chemical Physics Letters, 2003, 380(1/2):84-87. https://www.sciencedirect.com/science/article/pii/S0009261403015525
    [24]
    JÜRGENS B, IRRAN E, SENKER J, et al.Melem (2, 5, 8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride:synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies[J]. Journal of the American Chemical Society, 2003, 125(34):10288-10300. doi: 10.1021/ja0357689
    [25]
    STAVROU E, LOBANOV S, DONG H, et al.Synthesis of ultra-incompressible sp3-hybridized carbon nitride with 1:1 stoichiometry[J]. Chemistry of Materials, 2016, 28(19):6925-6933. doi: 10.1021/acs.chemmater.6b02593
    [26]
    WANG Y, LV J, ZHU L, et al.Crystal structure prediction via particle-swarm optimization[J]. Physical Review B, 2010, 82(9):094116. doi: 10.1103/PhysRevB.82.094116
    [27]
    SEGALL M D, PHILIP J D L, PROBERT M J, et al.First-principles simulation:ideas, illustrations and the CASTEP code[J]. Journal of Physics:Condensed Matter, 2002, 14(11):2717-2744. doi: 10.1088/0953-8984/14/11/301
    [28]
    KOHN W, SHAM L J.Self-consistent equations including exchange and correlation effects[J]. Physical Review A, 1965, 140(4):1133-1138. http://tu-freiberg.de/sites/default/files/media/institut-fuer-theoretische-physik-10451/Lehre/Dichtefunktionaltheorie/a9rf1a3.pdf
    [29]
    HOHENBERG P, KOHN W.Inhomogeneous electron gas[J]. Physical Review B, 1964, 136(3):864-871. http://www.researchgate.net/publication/235563075_Inhomogeneous_Electron_Gas
    [30]
    JONES R O, GUNNARSSON O.The density functional formalism, its applications and prospects[J]. Reviews of Modern Physics, 1989, 61(3):689-746. doi: 10.1103/RevModPhys.61.689
    [31]
    MONKHORST H J, PACK J D.Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12):5188-5192. doi: 10.1103/PhysRevB.13.5188
    [32]
    FISCHER T H, ALMLOF J.General methods for geometry and wave function optimization[J]. The Journal of Physical Chemistry, 1992, 96(24):9768-9774. doi: 10.1021/j100203a036
    [33]
    CLARK S J, SEGALL M D, PICKARD C J, et al.First principles methods using CASTEP[J]. Zeitschrift für Kristallographie-Crystalline Materials, 2005, 220(5/6):567-570. http://ci.nii.ac.jp/naid/10026643729
    [34]
    HILL R.The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society:Section A, 1952, 65(5):349. doi: 10.1088/0370-1298/65/5/307
    [35]
    VENABLES J A, ENGLISH C A.Electron diffraction and the structure of α-N2[J]. Acta Crystallographica Section B:Structural Science, Crystal Engineering and Materials, 1974, 30:929-935. doi: 10.1107/S0567740874004067
    [36]
    WU Z J, ZHAO E J, XIANG H P, et al.Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles[J]. Physical Review B, 2007, 76(5):054115. doi: 10.1103/PhysRevB.76.054115
    [37]
    CHEN X Q, NIU H, LI D, et al.Modeling hardness of polycrystalline materials and bulk metallic glasses[J]. Intermetallics, 2011, 19(9):1275-1281. doi: 10.1016/j.intermet.2011.03.026
    [38]
    TIAN Y, XU B, ZHAO Z.Microscopic theory of hardness and design of novel superhard crystals[J]. International Journal of Refractory Metals and Hard Materials, 2012, 33:93-106. doi: 10.1016/j.ijrmhm.2012.02.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views(8627) PDF downloads(142) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return