Volume 32 Issue 1
Dec 2017
Turn off MathJax
Article Contents
SONG Yunfei, ZHENG Zhaoyang, WU Honglin, ZHENG Xianxu, WU Qiang, YU Guoyang, YANG Yanqian. A Desktop Laser Driven Shock Wave Technique and Its Applications to Molecular Reaction Mechanism of Energetic Materials[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010107. doi: 10.11858/gywlxb.20170599
Citation: SONG Yunfei, ZHENG Zhaoyang, WU Honglin, ZHENG Xianxu, WU Qiang, YU Guoyang, YANG Yanqian. A Desktop Laser Driven Shock Wave Technique and Its Applications to Molecular Reaction Mechanism of Energetic Materials[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010107. doi: 10.11858/gywlxb.20170599

A Desktop Laser Driven Shock Wave Technique and Its Applications to Molecular Reaction Mechanism of Energetic Materials

doi: 10.11858/gywlxb.20170599
  • Received Date: 26 Jun 2017
  • Rev Recd Date: 11 Jul 2017
  • The miniature desktop pulse laser equipment can be used to drive shock wave and load dynamic high pressure (DHP) in materials, a technique marked by its low cost, high experimental repetition frequency and ultra high loading rate.The present paper presents the work we have done so far on the desktop laser driven shock wave technique and its corresponding application in exploring the molecular reaction mechanism of energetic materials under shock.We have built an experimental system using nanosecond laser pulses and developed a method to characterize the features of shock wave.The laser driven shock wave obtained in our experiment has a rise-time of only a few nanoseconds and a peak pressure of no less than 2 GPa.This experimental system has been used to study the shock sensitivity of the typical energetic materials RDX.It was found that the intramolecular charge transfer induced by DHP is a key factor influencing the sensitivity.Under high pressure, the electrons on the C-N heterocycle will transfer to the nitro group, leading to the increase of the sensitivity of NO2.This result can provide experimental reference for understanding the shock ignition mechanism of RDX.Through the present and the future subsequent work, we expect to develop a comprehensive experimental technique that can support the investigation about the shock ignition mechanism of energetic materials on the molecular level.

     

  • loading
  • [1]
    陈源福, 刘福生, 张宁超, 等.瞬态激光拉曼光谱测量系统及其在苯冲击压缩实验中的应用[J].高压物理学报, 2013, 27(4):505-510. doi: 10.11858/gywlxb.2013.04.006

    CHEN F Y, LIU F S, ZHANG N C, et al.Measurement system of transient raman spectroscopy and its application to benzene under shock compression [J].Chinese Journal of High Pressure Physics, 2013, 27(4):505-510. doi: 10.11858/gywlxb.2013.04.006
    [2]
    文尚刚, 孙承纬, 赵锋, 等.多级爆轰驱动——研究超高速碰撞的一种新的加载技术[J].高压物理学报, 2000, 14(1):22-27. doi: 10.11858/gywlxb.2000.01.004

    WEN S G, SUN C W, ZHAO F, et al.Multi-stage detonation system-a new loading technology for studying hypervelocity impact [J].Chinese Journal of High Pressure Physics, 2000, 14(1):22-27. doi: 10.11858/gywlxb.2000.01.004
    [3]
    孙承纬, 赵剑衡, 王桂吉, 等.磁驱动准等熵平面压缩和超高速飞片发射实验技术原理、装置及应用[J].力学进展, 2012, 42(2):206-219. doi: 10.6052/1000-0992-2012-2-20120208

    SUN C W, ZHAO J H, WANG G J, et al.Progress in magnetic loading techniques for isentropic compression experiments and ultra-high velocity flyer launching [J].Advances in Mechanics, 2012, 42(2):206-219. doi: 10.6052/1000-0992-2012-2-20120208
    [4]
    WINEY J M, GUPTA Y M.Shock-induced chemical changes in neat nitromethane:use of time-resolved Raman spectroscopy [J].The Journal of Physical Chemistry B, 1997, 101(50):10733-10743. doi: 10.1021/jp972588a
    [5]
    PATTERSON J E, DREGER Z A, GUPTA Y M.Shock wave-induced phase transition in RDX single crystals [J].The Journal of Physical Chemistry B, 2007, 111(37):10897-10904. doi: 10.1021/jp079502q
    [6]
    YANG Y Q, WANG S F, SUN Z Y, et al.Propagation of shock-induced chemistry in nanoenergetic materials:the first micrometer [J].Journal of Applied Physics, 2004, 95(7):3667-3676. doi: 10.1063/1.1652250
    [7]
    TOKMAKOFF A, FAYER M D, DLOTT D D.Chemical reaction initiation and hot-spot formation in shocked energetic molecular materials [J].The Journal of Physical Chemistry, 1993, 97(9):1901-1913. doi: 10.1021/j100111a031
    [8]
    SAKATA J, WIGHT C A.Shock-initiated chemistry of energetic materials [J].The Journal of Physical Chemistry, 1995, 99(17):6584-6588. doi: 10.1021/j100017a046
    [9]
    KUKLJA M M.On the initiation of chemical reactions by electronic excitations in molecular solids [J].Applied Physics A:Materials Science & Processing, 2003, 76(3):359-366. doi: 10.1007/s00339-002-1821-x
    [10]
    BHATTACHARYA A, BERNSTEIN E R.Nonadiabatic decomposition of gas-phase RDX through conical intersections:an ONIOM-CASSCF study [J].The Journal of Physical Chemistry A, 2011, 115(17):4135-4147. doi: 10.1021/jp109152p
    [11]
    CHEN S, TOLBERT W A, DLOTT D D.Direct measurement of ultrafast multiphonon up-pumping in high explosives [J].The Journal of Physical Chemistry, 1994, 98(32):7759-7766. doi: 10.1021/j100083a004
    [12]
    HONG X H, CHEN S, DLOTT D D.Ultrafast mode-specific intermolecular vibrational energy transfer to liquid nitromethane [J].The Journal of Physical Chemistry, 1995, 99(22):9102-9109. doi: 10.1021/j100022a023
    [13]
    KOENIG M, FARAL B, BOUDENNE J M, et al.Relative consistency of equations of state by laser driven shock waves [J].Physical Review Letters, 1995, 74(12):2260-2263. doi: 10.1103/PhysRevLett.74.2260
    [14]
    TAKAMATSU K, OZAKI N, TANAKA K A, et al.Equation-of-state measurements of polyimide at pressures up to 5.8 TPa using low-density foam with laser-driven shock waves [J].Physical Review E, 2003, 67(5):056406. doi: 10.1103/PhysRevE.67.056406
    [15]
    COTTET F, HALLOUIN M, ROMAIN J P, et al.Enhancement of a laser-driven shock wave up to 10 TPa by the impedance-match technique [J].Applied Physics Letters, 1985, 47(7):678-680. doi: 10.1063/1.96055
    [16]
    DEVAUX D, FABBRO R, TOLLIER L, et al.Generation of shock waves by laser-induced plasma in confined geometry [J].Journal of Applied Physics, 1993, 74(4):2268-2273. doi: 10.1063/1.354710
    [17]
    TAS G, FRANKEN J, HAMBIR S A, et al.Ultrafast Raman spectroscopy of shock fronts in molecular solids [J].Physical Review Letters, 1997, 78(24):4585-4588. doi: 10.1103/PhysRevLett.78.4585
    [18]
    SONG Y F, ZHENG X X, YU G Y, et al.The characteristics of laser-driven shock wave investigated by time-resolved Raman spectroscopy [J].Journal of Raman Spectroscopy, 2011, 42(3):345-348. doi: 10.1002/jrs.v42.3
    [19]
    YU G Y, ZHENG X X, SONG Y F, et al.Observation of laser-driven shock propagation by nanosecond time-resolved Raman spectroscopy [J].Journal of Applied Physics, 2015, 117(3):033102. doi: 10.1063/1.4906211
    [20]
    DANG N C, DREGER Z A, GUPTA Y M, et al.Time-resolved spectroscopic measurements of shock-wave induced decomposition in cyclotrimethylene trinitramine (RDX) crystals:anisotropic response [J].The Journal of Physical Chemistry A, 2010, 114(43):11560-11566. doi: 10.1021/jp106892c
    [21]
    DEAK J C, IWAKI L K, DLOTT D D.Vibrational energy redistribution in polyatomic liquids:ultrafast IR-Raman spectroscopy of nitromethane [J].The Journal of Physical Chemistry A, 1999, 103(8):971-979. doi: 10.1021/jp9839899
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(9241) PDF downloads(489) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return