Citation: | ZHANG Chao, SUO Tao, TAN Weili, ZHANG Xinyue, WANG Cunxian, LI Yulong. A Method for Testing Dynamic Mechanical Behavior of Materials at Ultra-High Temperature and in-Situ Observation[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 013202. doi: 10.11858/gywlxb.20170522 |
[1] |
魏延鹏, 虞钢, 段祝平.高温高应变率下异种不锈钢激光焊接件的力学性能[J].爆炸与冲击, 2011, 31(5):504-509. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bzycj201105009
WEI Y P, YU G, DUAN Z P.Mechanical properties of laser-welded dissimilar stainless steels structure at elevated temperature and high strain rates[J].Explosion and Shock Waves, 2011, 31(5):504-509. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bzycj201105009
|
[2] |
宫旭辉, 王宇, 夏源明, 等.TC21钛合金的高温动态拉伸力学行为[J].中国有色金属学报, 2010, 20(4):647-654. http://www.ysxbcn.com/down/down_41777.html
GONG X H, WANG Y, XIA Y M, et al.Dynamic tensile behavior of TC21 titanium alloys at elevated temperatures[J].The Chinese Journal of Nonferrous Metals, 2010, 20(4):647-654. http://www.ysxbcn.com/down/down_41777.html
|
[3] |
李玉龙, 郭伟国, 徐绯, 等.Hopkinson压杆技术的推广应用[J].爆炸与冲击, 2006, 26(5):385-394. doi: 10.3321/j.issn:1001-1455.2006.05.001
LI Y L, GUO W G, XU F, et al.The extended application of Hopkinson bar technique[J].Explosion and Shock Waves, 2006, 26(5):385-394. doi: 10.3321/j.issn:1001-1455.2006.05.001
|
[4] |
CHEN W N, SONG B.Split Hopkinson (Kolsky) bar:design, testing and applications[M].New York:Springer, 2011.
|
[5] |
陈荣, 卢芳云, 林玉亮, 等.分离式Hopkinson压杆实验技术研究进展[J].力学进展, 2009, 39(5):576-587. doi: 10.6052/1000-0992-2009-5-J2008-096
CHEN R, LU F Y, LIN Y L, et al.A critical review of split Hopkinson pressure bar technique[J].Advances in Mechanics, 2009, 39(5):576-587. doi: 10.6052/1000-0992-2009-5-J2008-096
|
[6] |
CHIDDISTER J L, MALVERN L E.Compression-impact testing of aluminum at elevated temperatures[J].Experimental Mechanics, 1963, 3(4):81-90. doi: 10.1007/BF02325890
|
[7] |
LINDHOLM U S, YEAKLEY L M.High strain-rate testing:tension and compression[J].Experimental Mechanics, 1968, 8(1):1-9. doi: 10.1007/BF02326244
|
[8] |
LATELLA B A, HUMPHRIES S R.Young's modulus of a 2.25Cr-1Mo steel at elevated temperature[J].Scripta Materialia, 2004, 51(7):635-639. doi: 10.1016/j.scriptamat.2004.06.028
|
[9] |
LANKFORD J.Temperature-strain rate dependance of compressive strength and damage mechanisms in aluminium oxide[J].Journal of Materials Science, 1981, 16(6):1567-1578. doi: 10.1007/BF02396874
|
[10] |
GILAT A, WU X.Elevated temperature testing with the torsional split Hopkinson bar[J].Journal of Materials Science, 1994, 34(2):166-170. doi: 10.1007/BF02325713
|
[11] |
NEMAT-NASSER S, ISAACS J B, STARRETT J E.Hopkinson techniques for dynamic recovery experiments[J].Proceedings of the Royal Society A, 1991, 435(1894):371-391. doi: 10.1098/rspa.1991.0150
|
[12] |
NEMAT-NASSER S, ISAACS J B.Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and TaW alloys[J].Acta Materialia, 1997, 45(3):907-919. doi: 10.1016/S1359-6454(96)00243-1
|
[13] |
SEO S, MIN O, YANG H.Constitutive equation for Ti-6Al-4V at high temperatures measured using the SHPB technique[J].International Journal of Impact Engineering, 2005, 31(6):735-754. doi: 10.1016/j.ijimpeng.2004.04.010
|
[14] |
APOSTOL M, VUORISTO T, KUOKKALA V T.High temperature high strain rate testing with a compressive SHPB[J].Journal de Physique Ⅳ (Proceedings), 2003, 110:459-464. doi: 10.1051/jp4:20020736
|
[15] |
LI Y, GUO Y, HU H, et al.A critical assessment of high-temperature dynamic mechanical testing of metals[J].International Journal of Impact Engineering, 2009, 36(2):177-184. doi: 10.1016/j.ijimpeng.2008.05.004
|
[16] |
李玉龙, 索涛, 郭伟国, 等.确定材料在高温高应变率下动态性能的Hopkinson杆系统[J].爆炸与冲击, 2005, 25(6):487-492. doi: 10.11883/1001-1455(2005)06-0487-06
LI Y L, SUO T, GUO W G, et al.Determination of dynamic behavior of materials at elevated temperatures and high strain rates using Hopkinson bar[J].Explosion and Shock Waves, 2005, 25(6):487-492. doi: 10.11883/1001-1455(2005)06-0487-06
|
[17] |
KAJBERG J, SUNDIN K G.Material characterisation using high-temperature split Hopkinson pressure bar[J].Journal of Materials Processing Technology, 2013, 213(4):522-531. doi: 10.1016/j.jmatprotec.2012.11.008
|
[18] |
ZHANG C, SUO T, TAN W, et al.An experimental method for determination of dynamic mechanical behavior of materials at high temperatures[J].International Journal of Impact Engineering, 2017, 102:27-35. doi: 10.1016/j.ijimpeng.2016.12.002
|
[19] |
SONG B, ANTOUN B R, NIE X, et al.High-rate characterization of 304L stainless steel at elevated temperatures for recrystallization investigation[J].Experimental Mechanics, 2009, 50(4):553-560. doi: 10.1007/s11340-009-9253-6
|
[20] |
MATES S P, RHORER R, WHITENTON E, et al.A pulse-heated Kolsky bar technique for measuring the flow stress of metals at high loading and heating rates[J].Experimental Mechanics, 2008, 48(6):799-807. doi: 10.1007/s11340-008-9137-1
|
[1] | HUANG Min, ZHU Benhao, XIAO Gesheng, QIAO Li. Simulation on Deformation Damage and Strain Rate Effect of Nb3Sn Composite Superconductors under Cycling Load at Extreme Low Temperature[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 024201. doi: 10.11858/gywlxb.20230755 |
[2] | NIE Feiqing, MA Ruiqiang, LI Zhiqiang. Compressive Properties of Ice Containing Cotton at Low Strain Rates[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034104. doi: 10.11858/gywlxb.20230608 |
[3] | TIAN Xinyu, DENG Qingtian, LI Xinbo, SONG Xueli, WANG Guosheng, WEN Jinpeng. Quasi-Static Compression Stability and Enegy Absorption Performance of Cellular I-Beam[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044103. doi: 10.11858/gywlxb.20230657 |
[4] | YU Wenfeng, LI Jinzhu, YAO Zhiyan, HUANG Fenglei. Mechanical Behaviors and Constitutive Model of Polymide under Quasi-Static and Dynamic Compressive Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044101. doi: 10.11858/gywlxb.20210922 |
[5] | CHANG Chao, MA Zhen, CHU Jingquan, HOU Jianfeng, ZHANG Weiwei. Research on Compression Deformation of Hollow Lattice Structure Based on Additive Manufacturing[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024101. doi: 10.11858/gywlxb.20210885 |
[6] | WEN Yanbo, HUANG Ruiyuan, LI Ping, MA Jian, XIAO Kaitao. Damage Evolution Equation of Concrete Materials at High Temperatures and High Strain Rates[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024103. doi: 10.11858/gywlxb.20200617 |
[7] | ZHANG Bingbing, XUE Zhongqing, LEI Yingchun, ZHANG Xizhu, FAN Zhiqiang. Study on Anisotropic Crushing Behavior of the Functionally Gradient Aluminum Foam[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024101. doi: 10.11858/gywlxb.20200618 |
[8] | FAN Wenjie, XUE Pengcheng, WANG Genwei, WANG Bin. Safety Performance of Power Lithium Ion Battery under Compressive Load[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 065901. doi: 10.11858/gywlxb.20190752 |
[9] | WU Qijian, ZHI Xudong. Strain Rate Effect of GFRP-Reinforced Circular Steel Tube under Low-Velocity Impact[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044203. doi: 10.11858/gywlxb.20180653 |
[10] | LI Xueyan, LI Zhibin, ZHANG Duo. Mechanical Behaviors of Closed-Cell Aluminum Foams under Quasi-Static Compression-Shear Loads[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 034101. doi: 10.11858/gywlxb.20170655 |
[11] | LI Xueyan, LI Zhibin, ZHANG Duo. Constitutive Model of Aluminum Foams Considering Temperature Effect under Quasi-Static Compression[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 044103. doi: 10.11858/gywlxb.20170642 |
[12] | GAO Guang-Fa. Hardening Effect of the Strain Rate on the Dynamic Tensile Strength of the Plain Concrete[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 593-602. doi: 10.11858/gywlxb.2017.05.013 |
[13] | GAO Guang-Fa. Effect of Strain-Rate Hardening on Dynamic Compressive Strength of Plain Concrete[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 261-270. doi: 10.11858/gywlxb.2017.03.007 |
[14] | GUO Xiang, LI Yu-Long, SUO Tao, LIU Hui-Fang, ZHANG Chao. Dynamic Deformation Image Deblurring and Image Processing for Digital Imaging Correlation Measurement[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 426-432. doi: 10.11858/gywlxb.2017.00.011 |
[15] | WANG Peng-Fei, XU Song-Lin, HU Shi-Sheng. A Constitutive Relation of Aluminum Foam Coupled with Temperature and Strain Rate[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 23-28. doi: 10.11858/gywlxb.2014.01.004 |
[16] | LU Guo-Yun, GUAN Wen-Bo, YANG Hui-Wei, HAN Zhi-Jun, LEI Jian-Ping. Deformation Mode of Hemispherical Shell under Static Load[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 137-144. doi: 10.11858/gywlxb.2014.02.002 |
[17] | CHEN Ding-Ding, LU Fang-Yun, LIN Yu-Liang, JIANG Bang-Hai. Effects of Strain Rate and Temperature on Compressive Properties of an Aluminized PBX[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 361-366. doi: 10.11858/gywlxb.2013.03.007 |
[18] | ZHOU Zhi-Wei, WANG Zhi-Hua, ZHAO Long-Mao, SHU Xue-Feng. Experimental Investigation on the Yield Behavior of Aluminum Foams under Combined Stress States[J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 171-176. doi: 10.11858/gywlxb.2012.02.008 |
[19] | PANG Bao-Jun, YANG Zhen-Qi, WANG Li-Wen, CHI Run-Qiang. Dynamic Compression Properties and Constitutive Model with Strain Rate Effect of Rubber Material[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 407-415 . doi: 10.11858/gywlxb.2011.05.005 |
[20] | PENG Jian-Xiang, LI Da-Hong. The Influence of Temperature and Strain Rate on the Flow Stress of Tantalum[J]. Chinese Journal of High Pressure Physics, 2001, 15(2): 146-150 . doi: 10.11858/gywlxb.2001.02.012 |