Volume 32 Issue 1
Dec 2017
Turn off MathJax
Article Contents
ZHANG Chao, SUO Tao, TAN Weili, ZHANG Xinyue, WANG Cunxian, LI Yulong. A Method for Testing Dynamic Mechanical Behavior of Materials at Ultra-High Temperature and in-Situ Observation[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 013202. doi: 10.11858/gywlxb.20170522
Citation: ZHANG Chao, SUO Tao, TAN Weili, ZHANG Xinyue, WANG Cunxian, LI Yulong. A Method for Testing Dynamic Mechanical Behavior of Materials at Ultra-High Temperature and in-Situ Observation[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 013202. doi: 10.11858/gywlxb.20170522

A Method for Testing Dynamic Mechanical Behavior of Materials at Ultra-High Temperature and in-Situ Observation

doi: 10.11858/gywlxb.20170522
  • Received Date: 11 Apr 2017
  • Rev Recd Date: 28 May 2017
  • In this work, we propose a novel method for testing the dynamic mechanical properties of materials and for in-situ observation at ultra-high temperature (up to 1 600 ℃).The experimental devices used include a classical split Hopkinson pressure bar, a MoSi2 heating source for obtaining ultra-high temperature, two piston rods added to complement the double synchronically assembled system and a high speed camera employed to observe the deformation.To verify the ability of the proposed method for operating at ultra-high temperature, we conducted our experiments on TC4 alloy at temperatures ranging from 20 to 1 400 ℃ and the strain rate of 2 000 s-1, and SiC at temperatures ranging from 20 to 1 200 ℃ and the strain-rate of 250 s-1.The results showed that the peak flow stress of the TC4 alloy specimen drops from 1.6 GPa at room temperature to 150 MPa at 1 400 ℃, and the compressive strength of the SiC specimen drops from 250 MPa at room temperature to 220 MPa at 1 200 ℃.Furthermore, the high speed images revealed that the oxide layer of the TC4 alloy specimen cracked in air but not in argon, and the initial cracks of the SiC specimen occurred at 80% of the compressive strength at room temperature and at 99% of the compressive strength at 1 200 ℃.

     

  • loading
  • [1]
    魏延鹏, 虞钢, 段祝平.高温高应变率下异种不锈钢激光焊接件的力学性能[J].爆炸与冲击, 2011, 31(5):504-509. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bzycj201105009

    WEI Y P, YU G, DUAN Z P.Mechanical properties of laser-welded dissimilar stainless steels structure at elevated temperature and high strain rates[J].Explosion and Shock Waves, 2011, 31(5):504-509. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bzycj201105009
    [2]
    宫旭辉, 王宇, 夏源明, 等.TC21钛合金的高温动态拉伸力学行为[J].中国有色金属学报, 2010, 20(4):647-654. http://www.ysxbcn.com/down/down_41777.html

    GONG X H, WANG Y, XIA Y M, et al.Dynamic tensile behavior of TC21 titanium alloys at elevated temperatures[J].The Chinese Journal of Nonferrous Metals, 2010, 20(4):647-654. http://www.ysxbcn.com/down/down_41777.html
    [3]
    李玉龙, 郭伟国, 徐绯, 等.Hopkinson压杆技术的推广应用[J].爆炸与冲击, 2006, 26(5):385-394. doi: 10.3321/j.issn:1001-1455.2006.05.001

    LI Y L, GUO W G, XU F, et al.The extended application of Hopkinson bar technique[J].Explosion and Shock Waves, 2006, 26(5):385-394. doi: 10.3321/j.issn:1001-1455.2006.05.001
    [4]
    CHEN W N, SONG B.Split Hopkinson (Kolsky) bar:design, testing and applications[M].New York:Springer, 2011.
    [5]
    陈荣, 卢芳云, 林玉亮, 等.分离式Hopkinson压杆实验技术研究进展[J].力学进展, 2009, 39(5):576-587. doi: 10.6052/1000-0992-2009-5-J2008-096

    CHEN R, LU F Y, LIN Y L, et al.A critical review of split Hopkinson pressure bar technique[J].Advances in Mechanics, 2009, 39(5):576-587. doi: 10.6052/1000-0992-2009-5-J2008-096
    [6]
    CHIDDISTER J L, MALVERN L E.Compression-impact testing of aluminum at elevated temperatures[J].Experimental Mechanics, 1963, 3(4):81-90. doi: 10.1007/BF02325890
    [7]
    LINDHOLM U S, YEAKLEY L M.High strain-rate testing:tension and compression[J].Experimental Mechanics, 1968, 8(1):1-9. doi: 10.1007/BF02326244
    [8]
    LATELLA B A, HUMPHRIES S R.Young's modulus of a 2.25Cr-1Mo steel at elevated temperature[J].Scripta Materialia, 2004, 51(7):635-639. doi: 10.1016/j.scriptamat.2004.06.028
    [9]
    LANKFORD J.Temperature-strain rate dependance of compressive strength and damage mechanisms in aluminium oxide[J].Journal of Materials Science, 1981, 16(6):1567-1578. doi: 10.1007/BF02396874
    [10]
    GILAT A, WU X.Elevated temperature testing with the torsional split Hopkinson bar[J].Journal of Materials Science, 1994, 34(2):166-170. doi: 10.1007/BF02325713
    [11]
    NEMAT-NASSER S, ISAACS J B, STARRETT J E.Hopkinson techniques for dynamic recovery experiments[J].Proceedings of the Royal Society A, 1991, 435(1894):371-391. doi: 10.1098/rspa.1991.0150
    [12]
    NEMAT-NASSER S, ISAACS J B.Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and TaW alloys[J].Acta Materialia, 1997, 45(3):907-919. doi: 10.1016/S1359-6454(96)00243-1
    [13]
    SEO S, MIN O, YANG H.Constitutive equation for Ti-6Al-4V at high temperatures measured using the SHPB technique[J].International Journal of Impact Engineering, 2005, 31(6):735-754. doi: 10.1016/j.ijimpeng.2004.04.010
    [14]
    APOSTOL M, VUORISTO T, KUOKKALA V T.High temperature high strain rate testing with a compressive SHPB[J].Journal de Physique Ⅳ (Proceedings), 2003, 110:459-464. doi: 10.1051/jp4:20020736
    [15]
    LI Y, GUO Y, HU H, et al.A critical assessment of high-temperature dynamic mechanical testing of metals[J].International Journal of Impact Engineering, 2009, 36(2):177-184. doi: 10.1016/j.ijimpeng.2008.05.004
    [16]
    李玉龙, 索涛, 郭伟国, 等.确定材料在高温高应变率下动态性能的Hopkinson杆系统[J].爆炸与冲击, 2005, 25(6):487-492. doi: 10.11883/1001-1455(2005)06-0487-06

    LI Y L, SUO T, GUO W G, et al.Determination of dynamic behavior of materials at elevated temperatures and high strain rates using Hopkinson bar[J].Explosion and Shock Waves, 2005, 25(6):487-492. doi: 10.11883/1001-1455(2005)06-0487-06
    [17]
    KAJBERG J, SUNDIN K G.Material characterisation using high-temperature split Hopkinson pressure bar[J].Journal of Materials Processing Technology, 2013, 213(4):522-531. doi: 10.1016/j.jmatprotec.2012.11.008
    [18]
    ZHANG C, SUO T, TAN W, et al.An experimental method for determination of dynamic mechanical behavior of materials at high temperatures[J].International Journal of Impact Engineering, 2017, 102:27-35. doi: 10.1016/j.ijimpeng.2016.12.002
    [19]
    SONG B, ANTOUN B R, NIE X, et al.High-rate characterization of 304L stainless steel at elevated temperatures for recrystallization investigation[J].Experimental Mechanics, 2009, 50(4):553-560. doi: 10.1007/s11340-009-9253-6
    [20]
    MATES S P, RHORER R, WHITENTON E, et al.A pulse-heated Kolsky bar technique for measuring the flow stress of metals at high loading and heating rates[J].Experimental Mechanics, 2008, 48(6):799-807. doi: 10.1007/s11340-008-9137-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(7776) PDF downloads(324) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return