Volume 25 Issue 4
Apr 2015
Turn off MathJax
Article Contents
LI Mu, SUN Cheng-Wei, ZHAO Jian-Heng, LUO Zhen-Xiong, ZHONG Jie. Conditions Analysis of Laser-Driven Plasma Jet[J]. Chinese Journal of High Pressure Physics, 2011, 25(4): 351-358 . doi: 10.11858/gywlxb.2011.04.011
Citation: LI Mu, SUN Cheng-Wei, ZHAO Jian-Heng, LUO Zhen-Xiong, ZHONG Jie. Conditions Analysis of Laser-Driven Plasma Jet[J]. Chinese Journal of High Pressure Physics, 2011, 25(4): 351-358 . doi: 10.11858/gywlxb.2011.04.011

Conditions Analysis of Laser-Driven Plasma Jet

doi: 10.11858/gywlxb.2011.04.011
More Information
  • Corresponding author: LI Mu
  • Received Date: 15 Apr 2010
  • Rev Recd Date: 24 Aug 2010
  • Issue Publish Date: 15 Aug 2011
  • Laser-driven plasma jets provide a new way to simulate astrophysical jets and generate shockless loading in solids to high pressures, which are very important in the researches of high energy density physics. The experiments are all under the conditions with very high laser intensity in literatures, but there is no criterion of the basic condition under which the plasma jets can form from the rear surface of the driven film. The main objective of the current study is to investigate the effects of laser intensity, wavelength, pulse width, target material, and target thickness on plasma jet using analytic numerical methods. The results show that the shock strength before exiting the rear of the reservoir must be higher than a threshold value for jet formation. For polyethylene, this value is about 80 GPa. The lower wavelength, boiling temperature, and ionization threshold value, and higher laser intensity, longer pulse width, thinner target, the plasma jet is more easily achieved for the thin target with low boiling temperature and small ionization threshold value when irradiated by a pulsed laser with high intensity, short wavelength and long pulse width.

     

  • loading
  • Anisimov S I, Prokhorov A M, Fortov V E. Application of High-Power Lasers to Study Matter at Ultrahigh Pressures [J]. Sov Phys Usp, 1984, 27(3): 181-205.
    More R M. Laser-Driven Shockwave Experiments at Extreme High Pressures [A]//Schwarz H J, Hora H, Lubin M J, et al. Laser Interaction and Related Plasma Phenomena [M]. New York: Plenum Publishing Corporation, 1981: 253-276.
    Anisimov S I, Luk'yanchuk B S. Selected Problems of Laser Ablation Theory [J]. Physics-Uspekhi, 2002, 45(3): 293-324.
    Sun C W, Lu Q S, Fan Z X, et al. Laser Irradiation Effect [M]. Beijing: National Defence Industry Press, 2002. (in Chinese)
    孙承纬, 陆启生, 范正修, 等. 激光辐照效应 [M]. 北京: 国防工业出版社, 2002.
    Eliezer S. The Interaction of High-Power Lasers with Plasmas [M]. Philadelphia: Institute of Physics Publishing, 2002.
    Gregory C D, Howe J, Loupias B, et al. Astrophysical Jet Experiments with Colliding Laser-Produced Plasmas [J]. Astrophys J, 2008, 676(1): 420-426.
    Woolsey N C, Gregory C D, Kodama R, et al. Laboratory Plasma Astrophysics Simulation Experiments Using Lasers [J]. J Phys Conf Ser, 2008, 112: 042009.
    Edwards J, Lorenz K T, Remington B A, et al. Laser-Driven Plasma Loader for Shockless Compression and Acceleration of Samples in the Solid State [J]. Phys Rev Lett, 2004, 92(7): 075002.
    Lorenz K T, Edwards M J, Glendinning S G, et al. Accessing Ultrahigh-Pressure, Quasi-Isentropic States of Matter [J]. Phys Plasmas, 2005, 12(5): 056309.
    Smith R F, Eggert J H, Jankowski A, et al. Stiff Response of Aluminum under Ultrafast Shockless Compression to 110 GPa [J]. Phys Rev Lett, 2007, 98(6): 065701.
    Smith R F, Pollaine S M, Moon S J, et al. High Planarity X-Ray Drive for Ultrafast Shockless-Compression Experiments [J]. Phys Plasmas, 2007, 14(5): 057105.
    Yaakobi B, Boehly T R, Sangster T C, et al. Extended X-Ray Absorption Fine Structure Measurements of Quasi-Isentropically Compressed Vanadium Targets on the OMEGA Laser [J]. Phys Plasmas, 2008, 15(6): 062703.
    Smith R F, Lorenz K T, Ho D, et al. Graded-Density Reservoirs for Accessing High Stress Low Temperature Material States [J]. Astrophys Space Sci, 2007, 307(1-3): 269-272.
    Park H, Remington B A, Braun D, et al. Quasi-Isentropic Material Property Studies at Extreme Pressures: From Omega to NIF [J]. J Phys Conf Ser, 2008, 112: 042024.
    Moses E I, Boyd R N, Remington B A, et al. The National Ignition Facility: Ushering in a New Age for High Energy Density Science [J]. Phys Plasmas, 2009, 16(4): 041006.
    Marsh S P. LASL Shock Hugoniot Data [M]. London: University of California Press, 1980.
    Shu H. Laser Driven Shock Wave Stability and Compressions [A]//The 1st High Energy Density Physics Conference [C]. Chengdu, 2009. (in Chinese)
    舒桦. 强激光动载下材料的冲击稳定性及压缩性研究 [A]//第一届高能量密度物理会议 [C]. 成都, 2009.
    Holian K S. T-4 Handbook of Material Properties Database, LA-10160-MS-V. 1C [R]. USA: Los Alamos National Laboratory, 1984.
    Mo J J. Calculation of Metallic Compression Isentropes and Study on Isentropic Compression Experiments by Detonation Driving [D]. Mianyang: China Academy of Engineering Physics, 2006: 46-49. (in Chinese)
    莫建军. 金属等熵压缩线计算及爆轰加载等熵压缩实验研究 [D]. 绵阳: 中国工程物理研究院, 2006: 46-49.
    Li W X. One-Dimensional Nonsteady Flow and Shock Waves [M]. Beijing: National Defence Industry Press, 2003. (in Chinese)
    李维新. 一维不定常流与冲击波 [M]. 北京: 国防工业出版社, 2003.
    Chang S C. The Method of Space-Time Conservation Element and Solution Element-A New Approach for Solving the Navier-Stokes and Euler Equations [J]. J Comput Phys, 1995, 119(2): 295-324.
    Zhang Z C, Yu S T J, Chang S C, et al. A Modified Space-Time Conservation Element and Solution Element Method for Euler and Navier-Stokes Equations [A]//Proceedings of the AIAA Conference [C]. Albuquerque, 1999: 3277.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(8458) PDF downloads(609) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return