Volume 18 Issue 2
Apr 2015
Turn off MathJax
Article Contents
LI Hai-Jun, HE Yuan-Hang, DUAN Zhuo-Ping, ZHANG Qing-Ming. Research on the Pressure Loss in the Generating Process of Hyperpressure Waterjet[J]. Chinese Journal of High Pressure Physics, 2004, 18(2): 139-143 . doi: 10.11858/gywlxb.2004.02.008
Citation: LI Hai-Jun, HE Yuan-Hang, DUAN Zhuo-Ping, ZHANG Qing-Ming. Research on the Pressure Loss in the Generating Process of Hyperpressure Waterjet[J]. Chinese Journal of High Pressure Physics, 2004, 18(2): 139-143 . doi: 10.11858/gywlxb.2004.02.008

Research on the Pressure Loss in the Generating Process of Hyperpressure Waterjet

doi: 10.11858/gywlxb.2004.02.008
More Information
  • Corresponding author: LI Hai-Jun
  • Received Date: 12 Nov 2003
  • Rev Recd Date: 16 Feb 2004
  • Publish Date: 05 Jun 2004
  • The pressure loss in the generating process of hyperpressure waterjet is theoretically studied in this paper. The velocities of waterjets have been measured under different conditions. On the basis of theoretical results and the experimental data, the initial parameters of the hyperpressure waterjet have been obtained. The results show that the pressure loss in the generating process is mainly resulted from the section shrinkage. The lost pressure is about 49 percent of the final kinetic energy of hyperpressure waterjet. As the nozzle diameter increases, the pressure loss decreases and the output power of the waterjet generating system is enhanced. As waterjet pressure increases, the pressure loss increases, but the increased degree decreases.

     

  • loading
  • William D R. Equation of State Measurements of Materials Using a Three-State Gun to Impact Velocities of 11 km/s [J]. Int J Impact Eng, 2001, 26: 625-637.
    Timothy G T. Computational Design of Hypervelocity Launchers [J]. Int J Impact Eng, 1995, 17: 849-860.
    McGlaun J M, Thompson S L. CTH: A Three-Dimensional Shock Wave Physica Code [J]. Int J Impact Eng, 1990, 10: 351-360.
    Hua J S, Jing F Q, Gong G Z, et al. Study of Numerical Simulation for Quasi-Isentropic Compression [J]. Chinese Journal of High Pressure Physics, 2000, 14 (3): 195-202. (in Chinese)
    华劲松, 经福谦, 龚自正, 等. 准等熵压缩的数值模拟研究 [J]. 高压物理学报, 2000, 14 (3): 195-202.
    Ma D J. Study of High Resolution Numerical Methods for Compressible/Imcompressible Interface Flows [D]. Hefei: University of science and Tecnology of China, 2002. (in Chinese)
    马东军. 可压缩/不可压缩流体交界面高精度数值方法研究 [D]. 合肥: 中国科学技术大学, 2002.
    Colella P, Woodward P. The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations [J]. J Comput Phys, 1984, 54: 174-201.
    Bai J S. High Resolution Numerical Methods and Adaptive Mesh Refinement Algorithms for Compressible Multi-Fluid Dynamics [D]. Mianyang: China Academic Engineer Physics, 2003. (in Chinese)
    柏劲松. 可压缩多介质流体动力学高精度数值计算方法和网格自适应技术 [D]. 绵阳: 中国工程物理研究院, 2003.
    Chhabildas L C. An Impact Technique to Accelerate Flier Plates to Velocities over 12 km/s [R]. Sandia National Laboratories, DE93 002467.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(7949) PDF downloads(897) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return