Citation: | LIN Yingfeng, FU Chao, ZHANG Sinan, YAO Xueshuang, ZHENG Zhenhong, YANG Jiaxin, JIANG Zhuo. Research Progress of In-Situ Technology in Ultra-High Static Pressure Food Processing[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 045901. doi: 10.11858/gywlxb.20230815 |
[1] |
HUANG Q, YU D L, XU B, et al. Nanotwinned diamond with unprecedented hardness and stability [J]. Nature, 2014, 510(7504): 250–253. doi: 10.1038/nature13381
|
[2] |
DUAN D F, LIU Y X, MA Y B, et al. Structure and superconductivity of hydrides at high pressures [J]. National Science Review, 2017, 4(1): 121–135. doi: 10.1093/nsr/nww029
|
[3] |
LI F F, CUI Q L, CUI T, et al. In situ Brillouin scattering study of water in high pressure and high temperature conditions [J]. Journal of Physics: Condensed Matter, 2007, 19(42): 425205. doi: 10.1088/0953-8984/19/42/425205
|
[4] |
EREMETS M I, DROZDOV A P, KONG P P, et al. Semimetallic molecular hydrogen at pressure above 350 GPa [J]. Nature Physics, 2019, 15(12): 1246–1249. doi: 10.1038/s41567-019-0646-x
|
[5] |
LOUBEYRE P, OCCELLI F, DUMAS P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen [J]. Nature, 2020, 577(7792): 631–635. doi: 10.1038/s41586-019-1927-3
|
[6] |
AUBOURG S P. Impact of high-pressure processing on chemical constituents and nutritional properties in aquatic foods: a review [J]. International Journal of Food Science and Technology, 2018, 53(4): 873–891. doi: 10.1111/ijfs.13693
|
[7] |
SYED Q A, BUFFA M, GUAMIS B, et al. Factors affecting bacterial inactivation during high hydrostatic pressure processing of foods: a review [J]. Critical Reviews in Food Science and Nutrition, 2016, 56(3): 474–483. doi: 10.1080/10408398.2013.779570
|
[8] |
DENG H T, CAO J J, WANG D F, et al. Effects of high hydrostatic pressure on inactivation, morphological damage, and enzyme activity of Escherichia coli O157: H7 [J]. Journal of Food Safety, 2022, 42(5): e12998. doi: 10.1111/jfs.12998
|
[9] |
TORRES-OSSANDÓN M J, VEGA-GÁLVEZ A, LÓPEZ J, et al. Effects of high hydrostatic pressure processing and supercritical fluid extraction on bioactive compounds and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L. ) [J]. The Journal of Supercritical Fluids, 2018, 138: 215–220. doi: 10.1016/j.supflu.2018.05.005
|
[10] |
QIN Z H, GUO X F, LIN Y, et al. Effects of high hydrostatic pressure on physicochemical and functional properties of walnut (Juglans regia L.) protein isolate [J]. Journal of the Science of Food and Agriculture, 2013, 93(5): 1105–1111. doi: 10.1002/jsfa.5857
|
[11] |
MAO H K, CHEN X J, DING Y, et al. Solids, liquids, and gases under high pressure [J]. Reviews of Modern Physics, 2018, 90(1): 015007. doi: 10.1103/RevModPhys.90.015007
|
[12] |
韩奇钢, 班庆初. 小型超高压装置的设计原理及研究进展 [J]. 高压物理学报, 2015, 29(5): 337–346. doi: 10.11858/gywlxb.2015.05.003
HAN Q G, BAN Q C. Design theory, research and development of miniature ultra-high pressure devices [J]. Chinese Journal of High Pressure Physics, 2015, 29(5): 337–346. doi: 10.11858/gywlxb.2015.05.003
|
[13] |
AKASAKA K, YAMADA H. On-line cell high-pressure nuclear magnetic resonance technique: application to protein studies [J]. Methods in Enzymology, 2001, 338: 134–158. doi: 10.1016/s0076-6879(02)38218-1
|
[14] |
MINKOV V S, KRYLOV A S, BOLDYREVA E V, et al. Pressure-induced phase transitions in crystalline L- and DL-cysteine [J]. The Journal of Physical Chemistry B, 2008, 112(30): 8851–8854. doi: 10.1021/jp8020276
|
[15] |
LUZ-LIMA C, DE SOUSA G P, LIMA J A, et al. High pressure Raman spectra of β-form of L-glutamic acid [J]. Vibrational Spectroscopy, 2012, 58: 181–187. doi: 10.1016/j.vibspec.2011.12.005
|
[16] |
TUMANOV N A, BOLDYREVA E V. X-ray diffraction and Raman study of DL-alanine at high pressure: revision of phase transitions [J]. Acta Crystallographica Section B: Structural Science, 2012, 68(4): 412–423. doi: 10.1107/S0108768112028972
|
[17] |
ABAGARO B T O, Freire P T C, Silva J G, et al. High pressure Raman scattering of DL-leucine crystals [J]. Vibrational Spectroscopy, 2013, 66: 119–122. doi: 10.1016/j.vibspec.2013.03.001
|
[18] |
HOLANDA R O, FREIRE P T C, SILVA J A F, et al. High pressure Raman spectra of D-threonine crystal [J]. Vibrational Spectroscopy, 2013, 67: 1–5. doi: 10.1016/j.vibspec.2013.03.003
|
[19] |
MELO W D C, FREIRE P T C, FILHO J M, et al. Raman spectroscopy of D-methionine under high pressure [J]. Vibrational Spectroscopy, 2014, 72: 57–61. doi: 10.1016/j.vibspec.2014.02.012
|
[20] |
KOLESNIK E N, GORYAINOV S V, BOLDYREVA E V. Different behavior of L- and DL-serine crystals at high pressures: phase transitions in L-serine and stability of the DL-serine structure [J]. Doklady Physical Chemistry, 2005, 404(1): 169–172. doi: 10.1007/s10634-005-0052-1
|
[21] |
FU C, YAO X S, ZHANG S N, et al. High-pressure in situ methods revealing the effect of pressure on glutathione structure [J]. Food Chemistry, 2021, 359: 129808. doi: 10.1016/j.foodchem.2021.129808
|
[22] |
戴超. 食品小分子高压下结构变化的拉曼光谱研究 [D]. 广州: 华南农业大学, 2018.
DAI C. Raman spectroscopic study on structural changes of small food molecule under high pressure [D]. Guangzhou: South China Agricultural University, 2018.
|
[23] |
ZHENG Z H, YAO X S, ZHANG S N, et al. In-situ Raman study of α-D-glucose under different pressure and temperature [J]. Journal of Molecular Structure, 2023, 1274: 134539. doi: 10.1016/j.molstruc.2022.134539
|
[24] |
YAO X S, FU C, ZHANG S N, et al. Structure investigation of β-D-fructose crystal under high pressure: Raman scattering, IR absorption, and synchrotron X-ray diffraction [J]. Journal of Molecular Structure, 2020, 1220: 128746. doi: 10.1016/j.molstruc.2020.128746
|
[25] |
方亮. 超高压处理对猕猴桃果汁杀菌钝酶效果和品质的影响 [D]. 无锡: 江南大学, 2008.
FANG L. Effect of high pressure treatment on sterilization, enzyme inactivation and quality of kiwifruit juice [D]. Wuxi: Jiangnan University, 2008.
|
[26] |
韩晶晶, 储祥蔷. 利用中子散射探索生命世界中的物理奥秘 [J]. 物理, 2019, 48(12): 780–789. doi: 10.7693/wl20191202
HAN J J, CHU X Q. Using neutron scattering to explore the mysteries in biophysical sciences [J]. Physics, 2019, 48(12): 780–789. doi: 10.7693/wl20191202
|
[27] |
江波, 缪铭. 高静压加工优化食品酶催化体系: 现状与趋势 [J]. 中国食品学报, 2011, 11(9): 93–97. doi: 10.3969/j.issn.1009-7848.2011.09.010
JIANG B, MIAO M. Catalytic system of food enzyme under hydrostatic high pressure: status and trends [J]. Journal of Chinese Institute of Food Science and Technology, 2011, 11(9): 93–97. doi: 10.3969/j.issn.1009-7848.2011.09.010
|
[28] |
ROCKLIN G J, CHIDYAUSIKU T M, GORESHNIK I, et al. Global analysis of protein folding using massively parallel design, synthesis, and testing [J]. Science, 2017, 357(6347): 168–175. doi: 10.1126/science.aan0693
|
[29] |
杨新颖. 高静压对解脂耶氏酵母脂肪酶的作用及其机理初探 [D]. 无锡: 江南大学, 2016.
YANG X Y. Tentative exploration of the effect and mechanism of high hydrostatic pressure on Yarrowia lipolytica lipase lip2 [D]. Wuxi: Jiangnan University, 2016.
|
[30] |
MANGIALARDO S, PICCIRILLI F, PERUCCHI A, et al. Raman analysis of insulin denaturation induced by high-pressure and thermal treatments [J]. Journal of Raman Spectroscopy, 2012, 43(6): 692–700. doi: 10.1002/jrs.3097
|
[31] |
MÖLLER J, SCHROER M A, ERLKAMP M, et al. The effect of ionic strength, temperature, and pressure on the interaction potential of dense protein solutions: from nonlinear pressure response to protein crystallization [J]. Biophysical Journal, 2012, 102(11): 2641–2648. doi: 10.1016/j.bpj.2012.04.043
|
[32] |
NAGAE T, KAWAMURA T, CHAVAS L M G, et al. High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase [J]. Acta Crystallographica Section D: Biological Crystallography, 2012, 68(3): 300–309. doi: 10.1107/S0907444912001862
|
[33] |
ROCHE J, CARO J A, NORBERTO D R, et al. Cavities determine the pressure unfolding of proteins [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(18): 6945–6950. doi: 10.1073/pnas.1200915109
|
[34] |
ROCHE J, DELLAROLE M, CARO J A, et al. Remodeling of the folding free energy landscape of staphylococcal nuclease by cavity-creating mutations [J]. Biochemistry, 2012, 51(47): 9535–9546. doi: 10.1021/bi301071z
|
[35] |
CHEN G, MIAO M, JIANG B, et al. Effects of high hydrostatic pressure on lipase from Rhizopus chinensis: Ⅰ. conformational changes [J]. Innovative Food Science & Emerging Technologies, 2017, 41: 267–276. doi: 10.1016/j.ifset.2017.03.016
|
[36] |
ZHOU H L, WANG F H, NIU H H, et al. Structural studies and molecular dynamic simulations of polyphenol oxidase treated by high pressure processing [J]. Food Chemistry, 2022, 372: 131243. doi: 10.1016/j.foodchem.2021.131243
|
[37] |
DE JESUS A L T, LEITE T S, CRISTIANINI M. High isostatic pressure and thermal processing of açaí fruit (Euterpe oleracea Martius): effect on pulp color and inactivation of peroxidase and polyphenol oxidase [J]. Food Research International, 2018, 105: 853–862. doi: 10.1016/j.foodres.2017.12.013
|
[38] |
李汴生, 朱悦夫, 张微, 等. 低温和中温协同超高压对鲜榨荔枝汁灭酶处理和色泽影响的研究 [J]. 现代食品科技, 2017, 33(7): 151–156. doi: 10.13982/j.mfst.1673-9078.2017.7.022
LI B S, ZHU Y F, ZHANG W, et al. Effect of high pressure processing (HPP) combined with low and moderate temperature treatments on the color and enzyme inactivation in freshly squeezed lychee juice [J]. Modern Food Science and Technology, 2017, 33(7): 151–156. doi: 10.13982/j.mfst.1673-9078.2017.7.022
|
[39] |
ZHANG S N, ZHENG Z H, ZHENG C Y, et al. Effect of high hydrostatic pressure on activity, thermal stability and structure of horseradish peroxidase [J]. Food Chemistry, 2022, 379: 132142. doi: 10.1016/j.foodchem.2022.132142
|
[40] |
CHEN G, ZHANG Q P, CHEN H T, et al. In situ and real-time insight into Rhizopus chinensis lipase under high pressure and temperature: conformational traits and biobehavioural analysis [J]. International Journal of Biological Macromolecules, 2020, 154: 1314–1323. doi: 10.1016/j.ijbiomac.2019.11.009
|
[41] |
TEIXEIRA A S, DELADINO L, GARCÍA M A, et al. Microstructure analysis of high pressure induced gelatinization of maize starch in the presence of hydrocolloids [J]. Food and Bioproducts Processing, 2018, 112: 119–130. doi: 10.1016/j.fbp.2018.09.009
|
[42] |
CASTRO L M G, ALEXANDRE E M C, SARAIVA J A, et al. Impact of high pressure on starch properties: a review [J]. Food Hydrocolloids, 2020, 106: 105877. doi: 10.1016/j.foodhyd.2020.105877
|
[43] |
LEITE T S, DE JESUS A L T, SCHMIELE M, et al. High pressure processing (HPP) of pea starch: effect on the gelatinization properties [J]. LWT-Food Science and Technology, 2017, 76: 361–369. doi: 10.1016/j.lwt.2016.07.036
|
[44] |
LIU P L, HU X S, SHEN Q. Effect of high hydrostatic pressure on starches: a review [J]. Starch-Stärke, 2010, 62(12): 615–628. doi: 10.1002/star.201000001
|
[45] |
LIN Y F, YAO X S, ZHANG S N, et al. Comprehensive investigation of pressure-induced gelatinization of starches using in situ and ex-situ technical analyses [J]. Food Chemistry, 2024, 440: 138159. doi: 10.1016/j.foodchem.2023.138159
|
[46] |
曾庆梅, 谢慧明, 潘见, 等. 超高压处理对枯草芽孢杆菌超微结构的影响 [J]. 高压物理学报, 2006, 20(1): 83–87. doi: 10.3969/j.issn.1000-5773.2006.01.016
ZENG Q M, XIE H M, PAN J, et al. Effect of ultra-high pressure processing (UHPP) on the microstructure of Bacillus subtilis [J]. Chinese Journal of High Pressure Physics, 2006, 20(1): 83–87. doi: 10.3969/j.issn.1000-5773.2006.01.016
|
[47] |
OGER P M, DANIEL I, PICARD A. In situ Raman and X-ray spectroscopies to monitor microbial activities under high hydrostatic pressure [J]. Annals of the New York Academy of Sciences, 2010, 1189(1): 113–120. doi: 10.1111/j.1749-6632.2009.05176.x
|
[48] |
OGER P M, DANIEL I, PICARD A. Development of a low-pressure diamond anvil cell and analytical tools to monitor microbial activities in situ under controlled P and T [J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2006, 1764(3): 434–442. doi: 10.1016/j.bbapap.2005.11.009
|
[49] |
刘聪, 谢伟, 何林, 等. 单细胞拉曼光谱在微生物研究中的应用 [J]. 微生物学报, 2020, 60(6): 1051–1062. doi: 10.13343/j.cnki.wsxb.20190274
LIU C, XIE W, HE L, et al. Advances in the application of Raman microspectroscopy in microbe research [J]. Acta Microbiologica Sinica, 2020, 60(6): 1051–1062. doi: 10.13343/j.cnki.wsxb.20190274
|
[50] |
TAO Y F, WANG Y, HUANG S, et al. Metabolic-activity-based assessment of antimicrobial effects by D2O-labeled single-cell Raman microspectroscopy [J]. Analytical Chemistry, 2017, 89(7): 4108–4115. doi: 10.1021/acs.analchem.6b05051
|
[51] |
WANG Y, HUANG W E, CUI L, et al. Single cell stable isotope probing in microbiology using Raman microspectroscopy [J]. Current Opinion in Biotechnology, 2016, 41: 34–42. doi: 10.1016/j.copbio.2016.04.018
|
[52] |
NOOTHALAPATI H, SHIGETO S. Exploring metabolic pathways in vivo by a combined approach of mixed stable isotope-labeled Raman microspectroscopy and multivariate curve resolution analysis [J]. Analytical Chemistry, 2014, 86(15): 7828–7834. doi: 10.1021/ac501735c
|
[53] |
CUI L, YANG K, ZHU Y G. Stable isotope-labeled single-cell Raman spectroscopy revealing function and activity of environmental microbes [J]. Methods in Molecular Biology, 2019, 2046: 95–107. doi: 10.1007/978-1-4939-9721-3_8
|
[54] |
祁亚峰, 刘宇宏, 刘大猛. 拉曼光谱技术在肿瘤诊断上的应用研究进展 [J]. 激光与光电子学进展, 2020, 57(22): 220001. doi: 10.3788/LOP57.220001
QI Y F, LIU Y H, LIU D M. Research progress on application of Raman spectroscopy in tumor diagnosis [J]. Laser & Optoelectronics Progress, 2020, 57(22): 220001. doi: 10.3788/LOP57.220001
|
[55] |
RANJAN R, INDOLFI M, FERRARA M A, et al. Implementation of a nonlinear microscope based on stimulated Raman scattering [J]. Journal of Visualized Experiments, 2019, 149: e59614. doi: 10.3791/59614
|
[56] |
YANG W L, LI A, SUO Y Z, et al. Simultaneous two-color stimulated Raman scattering microscopy by adding a fiber amplifier to a 2 ps OPO-based SRS microscope [J]. Optics Letters, 2017, 42(3): 523–526. doi: 10.1364/OL.42.000523
|
[57] |
KRAFFT C, SCHIE I W, MEYER T, et al. Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications [J]. Chemical Society Reviews, 2016, 45(7): 1819–1849. doi: 10.1039/C5CS00564G
|
[58] |
OZEKI Y, KITAGAWA Y, SUMIMURA K, et al. Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses [J]. Optics Express, 2010, 18(13): 13708–13719. doi: 10.1364/OE.18.013708
|
[59] |
刘照军, 陶亚萍. 拉曼光谱成像技术新进展及其应用 [J]. 现代仪器, 2009, 15(5): 34–37. doi: 10.3969/j.issn.1672-7916.2009.05.007
LIU Z J, TAO Y P. Raman spectral imaging technology: new developments and applications [J]. Modern Instruments, 2009, 15(5): 34–37. doi: 10.3969/j.issn.1672-7916.2009.05.007
|
[60] |
VENKATA H N N, SHIGETO S. Stable isotope-labeled Raman imaging reveals dynamic proteome localization to lipid droplets in single fission yeast cells [J]. Chemistry & Biology, 2012, 19(11): 1373–1380. doi: 10.1016/j.chembiol.2012.08.020
|
[61] |
WU D Y, LI J F, REN B, et al. Electrochemical surface-enhanced Raman spectroscopy of nanostructures [J]. Chemical Society Reviews, 2008, 37(5): 1025–1041. doi: 10.1039/b707872m
|
[62] |
CIALLA D, MÄRZ A, BÖHME R, et al. Surface-enhanced Raman spectroscopy (SERS): progress and trends [J]. Analytical and Bioanalytical Chemistry, 2012, 403(1): 27–54. doi: 10.1007/s00216-011-5631-x
|
[63] |
CHENG L N, SUN D W, ZHU Z W, et al. Emerging techniques for assisting and accelerating food freezing processes: a review of recent research progresses [J]. Critical Reviews in Food Science and Nutrition, 2017, 57(4): 769–781. doi: 10.1080/10408398.2015.1004569
|
[64] |
李立, 孙智慧, 李晓燕, 等. 超高压技术在冷冻食品加工中的应用 [J]. 食品工业, 2021, 42(6): 328–333.
LI L, SUN Z H, LI X Y, et al. Application of high pressure technology in frozen food processing [J]. The Food Industry, 2021, 42(6): 328–333.
|
[65] |
HONG G P, CHOI M J. Comparison of the quality characteristics of abalone processed by high-pressure sub-zero temperature and pressure-shift freezing [J]. Innovative Food Science & Emerging Technologies, 2016, 33: 19–25. doi: 10.1016/j.ifset.2015.12.024
|
[66] |
苏光明, RAMASWAMY H S, 于勇, 等. 牛肉高压冷冻过程中热变化和冰晶形态研究 [J]. 农业机械学报, 2014, 45(3): 206–214.
SU G M, RAMASWAMY H S, YU Y, et al. Thermal behaviors and ice crystal properties in pressure shift freezing of beef [J]. Transactions of the Chinese Society of Agricultural Machinery, 2014, 45(3): 206–214.
|
[67] |
张小羽, 成培芳, 刘博, 等. 超高压处理对奶豆腐冻藏品质特性及微观结构的影响 [J]. 食品科学, 2022, 43(13): 40–47. doi: 10.7506/spkx1002-6630-20210705-033
ZHANG X Y, CHENG P F, LIU B, et al. Effect of ultra-high pressure treatment on the quality characteristics and microstructure of frozen hurood [J]. Food Science, 2022, 43(13): 40–47. doi: 10.7506/spkx1002-6630-20210705-033
|
[68] |
SHAHNAZAR S, BAGHERI S, TERMEHYOUSEFI A, et al. Structure, mechanism, and performance evaluation of natural gas hydrate kinetic inhibitors [J]. Reviews in Inorganic Chemistry, 2018, 38(1): 1–19. doi: 10.1515/revic-2017-0013
|
[69] |
CLAΒEN T, JAEGER M, LOEKMAN S, et al. Concentration of apple juice using CO2 gas hydrate technology to higher sugar contents [J]. Innovative Food Science & Emerging Technologies, 2020, 65: 102458. doi: 10.1016/j.ifset.2020.102458
|
[70] |
LI S F, SHEN Y M, LIU D B, et al. Concentrating orange juice through CO2 clathrate hydrate technology [J]. Chemical Engineering Research & Design, 2015, 93: 773–778. doi: 10.1016/j.cherd.2014.07.020
|
[71] |
LI S F, SHEN Y M, LIU D B, et al. Experimental study of concentration of tomato juice by CO2 hydrate formation [J]. Chemical Industry & Chemical Engineering Quarterly, 2015, 21(3): 441–446. doi: 10.2298/CICEQ140730046L
|
[72] |
UWINEZA P A, WAŚKIEWICZ A. Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials [J]. Molecules, 2020, 25(17): 3847. doi: 10.3390/molecules25173847
|
[73] |
陈贤伟, 杨泞琪. 浅谈超临界萃取 [J]. 福建分析测试, 2021, 30(6): 43–48. doi: 10.3969/j.issn.1009-8143.2021.06.09
CHEN X W, YANG N Q. Discussion on supercritical fluid extraction [J]. Fujian Analysis & Testing, 2021, 30(6): 43–48. doi: 10.3969/j.issn.1009-8143.2021.06.09
|
[74] |
BUZOLIN C N, PALANCO M E, WENDT O F, et al. In situ determination of dissolution kinetics of D-limonene in supercritical carbon dioxide by Raman spectroscopy [J]. New Journal of Chemistry, 2017, 41(22): 13929–13934. doi: 10.1039/C7NJ02549A
|