Volume 37 Issue 2
Apr 2023
Turn off MathJax
Article Contents
YUAN Haotian, LIU Zhao, SUN Wenhao, ZHANG Zhifan. Protective Performance of Steel-CFRP Laminates under Sharped Charge Projectile[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 024202. doi: 10.11858/gywlxb.20220698
Citation: YUAN Haotian, LIU Zhao, SUN Wenhao, ZHANG Zhifan. Protective Performance of Steel-CFRP Laminates under Sharped Charge Projectile[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 024202. doi: 10.11858/gywlxb.20220698

Protective Performance of Steel-CFRP Laminates under Sharped Charge Projectile

doi: 10.11858/gywlxb.20220698
  • Received Date: 29 Nov 2022
  • Rev Recd Date: 07 Jan 2023
  • Available Online: 25 Mar 2023
  • Issue Publish Date: 05 Apr 2023
  • Carbon fiber reinforced polymer (CFRP) is gradually applied to the design of anti-explosion and anti-shock engineering of warships due to its excellent anti-penetration performance. In order to study the protective performance of steel-CFRP laminates under the action of shaped charge projectile, numerical models of the damage analyses of steel-CFRP laminates under air explosion of shaped charge were established based on the arbitrary Lagrangian-Eulerian (ALE) method. The load characteristics and corresponding damage mechanism to steel-CFRP laminates were investigated. According to equal surface density method, various forms of steel-CFRP laminates with CFRP as face plate, back plate and sandwich core layer were designed. The anti-penetration performance of laminates with CFRP at different positions was compared and analyzed through the deceleration of the shaped charge projectile head and the size of the laminate crevasse, and a better laying form was obtained. On this basis, the thickness of the laminate was optimized. The results show that the three-layer sandwich structure of CFRP-steel-CFRP performs the best protective effect, and its better thickness ratio is 4.0∶1.4∶4.0.

     

  • loading
  • [1]
    KUMAR R R, REDDY I T, BALAJI S G, et al. Dynamic analysis of cantilever beam used carbon fiber composite for aerospace applications [J]. Materials Today: Proceedings, 2022, 68: 2079–2087. doi: 10.1016/j.matpr.2022.08.365
    [2]
    李家顺. 基于LS-DYNA汽车前防撞梁仿真分析及其结构优化 [J]. 农业装备与车辆工程, 2021, 59(4): 122–126. doi: 10.3969/j.issn.1673-3142.2021.04.028

    LI J S. Simulation analysis and structural optimization of automobile front anti-collision beam based on LS-DYNA [J]. Agricultural Equipment & Vehicle Engineering, 2021, 59(4): 122–126. doi: 10.3969/j.issn.1673-3142.2021.04.028
    [3]
    李威, 郭权锋. 碳纤维复合材料在航天领域的应用 [J]. 中国光学, 2011, 4(3): 201–212. doi: 10.3969/j.issn.2095-1531.2011.03.001

    LI W, GUO Q F. Application of carbon fiber composites to cosmonautic fields [J]. Chinese Journal of Optics, 2011, 4(3): 201–212. doi: 10.3969/j.issn.2095-1531.2011.03.001
    [4]
    彭露玫, 周成康, 张志勇, 等. 金属与碳纤维复合结构发射箱耐高温冲击性能 [J]. 兵工学报, 2021, 42(11): 2360–2367. doi: 10.3969/j.issn.1000-1093.2021.11.009

    PENG L M, ZHOU C K, ZHANG Z Y, et al. High-temperature shock resistance of launch container with metal and carbon fiber composite structure [J]. Acta Armamentarii, 2021, 42(11): 2360–2367. doi: 10.3969/j.issn.1000-1093.2021.11.009
    [5]
    钱伯章. 船用碳纤维复合材料的发展趋势 [J]. 合成纤维, 2020, 49(7): 57–58. doi: 10.16090/j.cnki.hcxw.2020.07.031

    QIAN B Z. Development trend of marine carbon fiber composites [J]. Synthetic Fiber in China, 2020, 49(7): 57–58. doi: 10.16090/j.cnki.hcxw.2020.07.031
    [6]
    ZHANG Z F, WANG C, XU W L, et al. Application of a new type of annular shaped charge in penetration into underwater double-hull structure [J]. International Journal of Impact Engineering, 2022, 159: 104057. doi: 10.1016/j.ijimpeng.2021.104057
    [7]
    黄龙华, 夏柳舟. “潜艇克星”: 世界反潜鱼雷概览 [J]. 环球军事, 2006(16): 48–49.

    HUANG L H, XIA L Z. Submarine star: world anti-submarine torpedo overview [J]. Global Military, 2006(16): 48–49.
    [8]
    王玉, 卢熹, 张方方, 等. 反潜鱼雷战斗部对典型潜艇目标毁伤效应研究 [J]. 兵器装备工程学报, 2021, 42(12): 112–116. doi: 10.11809/bqzbgcxb2021.12.016

    WANG Y, LU X, ZHANG F F, et al. Damage effect of anti-submarine torpedo warhead on typical submarine targets [J]. Journal of Ordnance Equipment Engineering, 2021, 42(12): 112–116. doi: 10.11809/bqzbgcxb2021.12.016
    [9]
    孙远翔, 胡皓亮, 张之凡. EFP水下成型影响因素的数值模拟 [J]. 高压物理学报, 2020, 34(6): 065104. doi: 10.11858/gywlxb.20200557

    SUN Y X, HU H L, ZHANG Z F. Simulation study on influential factors of EFP underwater forming [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065104. doi: 10.11858/gywlxb.20200557
    [10]
    魏明恺. 复合材料在海洋船舰中的应用 [J]. 中国战略新兴产业, 2017(4): 141–144. doi: 10.19474/j.cnki.10-1156/f.000373

    WEI M K. Application of composite materials in marine ships [J]. China Strategic Emerging Industry, 2017(4): 141–144. doi: 10.19474/j.cnki.10-1156/f.000373
    [11]
    BANIK A, ZHANG C, PANYATHONG D, et al. Effect of equienergetic low-velocity impact on CFRP with surface ice in low temperature arctic conditions [J]. Composites Part B: Engineering, 2022, 236: 109850. doi: 10.1016/j.compositesb.2022.109850
    [12]
    HU L L, LI M Y, YILIYAER T, et al. Strengthening of cracked DH36 steel plates by CFRP sheets under fatigue loading at low temperatures [J]. Ocean Engineering, 2022, 243: 110203. doi: 10.1016/j.oceaneng.2021.110203
    [13]
    刘姗姗, 刘亚军, 张英杰, 等. 碳纤维-泡沫铝夹芯板低速冲击响应 [J]. 高压物理学报, 2020, 34(3): 034202. doi: 10.11858/gywlxb.20190872

    LIU S S, LIU Y J, ZHANG Y J, et al. Low-velocity impact response of carbon fiber-aluminum foam sandwich plate [J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 034202. doi: 10.11858/gywlxb.20190872
    [14]
    王松, 李应刚, 黄鑫华, 等. 碳纤维增强复合材料夹芯板的砰击损伤特性 [J]. 高压物理学报, 2023, 37(1): 014204. doi: 10.11858/gywlxb.20220653

    WANG S, LI Y G, HUANG X H, et al. Damage characteristics of carbon fiber reinforced composite sandwich panels subjected to water slamming loads [J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 014204. doi: 10.11858/gywlxb.20220653
    [15]
    左新龙, 唐文献. 金属-CFRP复合型柱壳屈曲特性试验及数值研究 [J/OL]. 复合材料学报, (2022−08−12) [2022−11−24]. https://doi.org/10.13801/j.cnki.fhclxb.20220811.006.

    ZUO X L, TANG W X. Experimental and numerical study on buckling behaviour of steel-CFRP hybrid cylindrical shells [J/OL]. Acta Materiae Compositae Sinica, (2022−08−12) [2022−11−24]. https://doi.org/10.13801/j.cnki.fhclxb.20220811.006.
    [16]
    周昊, 郭锐, 刘荣忠. 碳纤维增强复合材料方形蜂窝夹层结构水中冲击波作用下的能量特性数值模拟 [J]. 兵工学报, 2018, 39(Suppl 1): 84–90. doi: 10.3969/j.issn.1000-1093.2018.S1.014

    ZHOU H, GUO R, LIU R Z. Numerical simulation on energy absorbing properties of carbon fiber reinforced composite sandwich plates with square honeycomb cores subjected to underwater shock waves [J]. Acta Armamentarii, 2018, 39(Suppl 1): 84–90. doi: 10.3969/j.issn.1000-1093.2018.S1.014
    [17]
    张弩, 于馨, 明付仁. 复合材料层合板在水下多层防护结构中的抗爆效能 [J]. 兵工学报, 2021, 42(Suppl 1): 135–141. doi: 10.3969/j.issn.1000-1093.2021.S1.017

    ZHANG N, YU X, MING F R. Anti-explosion performance of composite laminates in underwater multi-layer defensive structure [J]. Acta Armamentarii, 2021, 42(Suppl 1): 135–141. doi: 10.3969/j.issn.1000-1093.2021.S1.017
    [18]
    周越松, 梁森, 王得盼, 等. 阻尼材料/纤维层合板复合靶板抗冲击性能研究 [J]. 兵器装备工程学报, 2022, 43(1): 243–248. doi: 10.11809/bqzbgcxb2022.01.038

    ZHOU Y S, LIANG S, WANG D P, et al. Impact resistance behavior of damping material/fiber laminate composite target [J]. Journal of Ordnance Equipment Engineering, 2022, 43(1): 243–248. doi: 10.11809/bqzbgcxb2022.01.038
    [19]
    谢文波, 张伟, 姜雄文. 钢球斜侵彻碳纤维复合材料板的实验研究 [J]. 爆炸与冲击, 2018, 38(3): 647–653. doi: 10.11883/bzycj-2016-0289

    XIE W B, ZHANG W, JIANG X W. Oblique penetration on CFRPs by steel sphere [J]. Explosion and Shock Waves, 2018, 38(3): 647–653. doi: 10.11883/bzycj-2016-0289
    [20]
    秦溶蔓, 朱波, 乔琨, 等. 复合结构碳纤维防弹板的防弹性能仿真 [J]. 工程科学学报, 2021, 43(10): 1346–1354. doi: 10.13374/j.issn2095-9389.2021.04.21.001

    QIN R M, ZHU B, QIAO K, et al. Simulation study of the protective performance of composite structure carbon fiber bulletproof board [J]. Chinese Journal of Engineering, 2021, 43(10): 1346–1354. doi: 10.13374/j.issn2095-9389.2021.04.21.001
    [21]
    辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数手册 [M]. 北京: 机械工业出版社, 2020.

    XIN C L, XUE Z Q, TU J, et al. Manual of common material parameters for finite element analysis [M]. Beijing: China Machine Press, 2020.
    [22]
    刘武, 夏治园, 马刘博, 等. 预控破片战斗部爆炸飞散数值模拟 [J]. 火工品, 2020(4): 48–51. doi: 10.3969/j.issn.1003-1480.2020.04.013

    LIU W, XIA Z Y, MA L B, et al. Numerical simulation of explosion dispersion in pre-controlled fragment warhead [J]. Initiators & Pyrotechnics, 2020(4): 48–51. doi: 10.3969/j.issn.1003-1480.2020.04.013
    [23]
    时党勇, 李裕春, 张胜民. 基于ANSYS/LS-DYNA 8.1进行显式动力分析 [M]. 北京: 清华大学出版社, 2005.

    SHI D Y, LI Y C, ZHANG S M. Explicit dynamic analysis based on ANSYS/LS-DYNA 8.1 [M]. Beijing: Tsinghua University Press, 2005.
    [24]
    何兆亨, 刘颖, 李能华, 等. 基于LS-DYNA的CFRP方管轴向压溃仿真方法研究 [J]. 玻璃钢/复合材料, 2019(9): 20–25. doi: 10.3969/j.issn.1003-0999.2019.09.003

    HE Z H, LIU Y, LI N H, et al. Simulation methods for axial crushing CFRP tubes in LS-DYNA [J]. Composites Science and Engineering, 2019(9): 20–25. doi: 10.3969/j.issn.1003-0999.2019.09.003
    [25]
    黄洪. 聚能装药水下爆炸对目标的毁伤特性研究 [D]. 沈阳: 沈阳理工大学, 2021.

    HUANG H. Damage characteristics of shaped charge under explosion to target [D]. Shenyang: Shenyang Ligong University, 2021.
    [26]
    DEMIR T, ÜBEYLI M, YILDIRIM R O. Investigation on the ballistic impact behavior of various alloys against 7.62 mm armor piercing projectile [J]. Materials & Design, 2008, 29(10): 2009–2016.
    [27]
    钱伟长. 穿甲力学 [M]. 北京: 国防工业出版社, 1984.

    QIAN W C. Perforation mechanics [M]. Beijing: National Defense Industry Press, 1984.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(6)

    Article Metrics

    Article views(247) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return