Citation: | XIAO You, ZHI Xiaoqi, WANG Qi, FAN Xinghua. Characteristics and Mechanism of Slow Cook-off of Composite Explosive Charges[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025201. doi: 10.11858/gywlxb.20210871 |
[1] |
REYNOLDS M, HUNTINGTON-THRESHER W. Development of tuneable effects warheads [J]. Defence Technology, 2016, 12(3): 255–262. doi: 10.1016/j.dt.2016.01.006
|
[2] |
ARNOLD W. Tunable charge with internal layers [J]. Procedia Engineering, 2015, 103: 4–11. doi: 10.1016/j.proeng.2015.04.002
|
[3] |
HONG X W, LI W B, CHENG W, et al. Numerical simulation of the blast wave of a multilayer composite charge [J]. Defence Technology, 2020, 16(1): 96–106. doi: 10.1016/j.dt.2019.04.007
|
[4] |
向梅, 黄毅民, 饶国宁, 等. 不同升温速率下复合药柱烤燃实验与数值模拟研究 [J]. 爆炸与冲击, 2013, 33(4): 394–400. doi: 10.3969/j.issn.1001-1455.2013.04.010
XIANG M, HUANG Y M, RAO G N, et al. Cook-off test and numerical simulation for composite charge at different heating rates [J]. Explosion and Shock Waves, 2013, 33(4): 394–400. doi: 10.3969/j.issn.1001-1455.2013.04.010
|
[5] |
任玉新, 陈海昕. 计算流体力学基础 [M]. 北京: 清华大学出版社, 2006.
REN Y X, CHEN H X. Fundamentals of computational fluid dynamics [M]. Beijing: Tsinghua University Press, 2006.
|
[6] |
MCGUIRE R R, TARVER C M. Chemical-decomposition models for the thermal explosion of confined HMX, TATB, RDX, and TNT explosives [C]//Seventh Symposium on Detonation. Annapolis, Maryland, US: Office of Naval Research, 1981.
|
[7] |
ABD-ELGHANY M, ELBEIH A, HASSANEIN S. Thermal behavior and decomposition kinetics of RDX and RDX/HTPB composition using various techniques and methods [J]. Central European Journal of Energetic Materials, 2016, 13(3): 714–735. doi: 10.22211/cejem/64954
|
[8] |
TARVER C M, KOERNER J G. Effects of endothermic binders on times to explosion of HMX- and TATB-based plastic bonded explosives [J]. Journal of Energetic Materials, 2007, 26(1): 1–28. doi: 10.1080/07370650701719170
|
[9] |
WEN Q, WANG Y S, WANG G Y, et al. Numerical analysis of response of a fuze to cook-off [J]. Journal of Energetic Materials, 2019, 37(3): 340–355. doi: 10.1080/07370652.2019.1615580
|
[10] |
徐瑞, 智小琦, 王帅. 缓释结构对B炸药烤燃响应烈度的影响 [J]. 高压物理学报, 2021, 35(3): 035201. doi: 10.11858/gywlxb.20200657
XU R, ZHI X Q, WANG S. Influence of venting structure on the cook-off response intensity of composition B [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 035201. doi: 10.11858/gywlxb.20200657
|
[11] |
HU M, YU D M, WEI J B. Thermal conductivity determination of small polymer samples by differential scanning calorimetry [J]. Polymer Testing, 2007, 26(3): 333–337. doi: 10.1016/j.polymertesting.2006.11.003
|
[12] |
丁洋, 赵生伟, 初哲, 等. 激光辐照带壳炸药热点火数值计算模型 [J]. 现代应用物理, 2017, 8(3): 031001.
DING Y, ZHAO S W, CHU Z, et al. Modeling of thermal ignition of explosive with metal shell irradiated by laser beam [J]. Modern Applied Physics, 2017, 8(3): 031001.
|
[13] |
WETHTHIMUNI M L, CAPSONI D, MALAGODI M, et al. Shellac/nanoparticles dispersions as protective materials for wood [J]. Applied Physics A, 2016, 122(12): 1058. doi: 10.1007/s00339-016-0577-7
|
[14] |
GU J, LI H, ZHAO X, et al. Kinetic modeling of liquid phase RDX thermal decomposition process and its application in the slow cook-off test prediction [J]. Propellants, Explosives, Pyrotechnics, 2021, 46(6): 935–943. doi: 10.1002/prep.202000291
|
[15] |
GNANAPRAKASH K, CHAKRAVARTHY S R, JAYARAMAN K, et al. Combustion behaviour of composite sandwich propellants containing RDX [J]. Proceedings of the Combustion Institute, 2021, 38(3): 4451–4459. doi: 10.1016/j.proci.2020.06.387
|