Citation: | YANG Xiangli, HE Yong, HE Yuan, WANG Chuanting, XU Tao, TIAN Weixi, ZHOU Jie. 3D Mesoscopic Simulation of Shock Compression Behaviors of Reactive Materials[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 064203. doi: 10.11858/gywlxb.20200539 |
[1] |
周杰, 何勇, 何源, 等. 含能毁伤元冲击引爆模拟战斗部试验研究 [J]. 含能材料, 2016, 24(11): 1048–1056.
ZHOU J, HE Y, HE Y, et al. Experimental study on shock initiation of simulative warhead by energetic kill element [J]. Chinese Journal of Energetic Materials, 2016, 24(11): 1048–1056.
|
[2] |
王海福, 郑元枫, 余庆波, 等. 活性破片引燃航空煤油实验研究 [J]. 兵工学报, 2012, 33(9): 1148–1152.
WANG H F, ZHENG Y F, YU Q B, et al. Experimental research on igniting the aviation kerosene by reactive fragment [J]. Acta Armamentarii, 2012, 33(9): 1148–1152.
|
[3] |
徐松林, 阳世清, 张炜, 等. PTFE/Al含能复合物的本构关系 [J]. 爆炸与冲击, 2010, 30(4): 439–444.
XU S L, YANG S Q, ZHANG W, et al. A constitutive relation for a pressed PTFE/Al energetic composite material [J]. Explosion and Shock Waves, 2010, 30(4): 439–444.
|
[4] |
徐松林, 阳世清, 徐文涛, 等. PTFE/Al反应材料的力学性能研究 [J]. 高压物理学报, 2009, 23(5): 384–388.
XU S L, YANG S Q, XU W T, et al. Research on the mechanical performance of PTFE/Al reactive materials [J]. Chinese Journal of High Pressure Physics, 2009, 23(5): 384–388.
|
[5] |
赵鹏铎, 卢芳云, 李俊玲, 等. 活性材料PTFE/Al动态压缩性能 [J]. 含能材料, 2009, 17(4): 459–462.
ZHAO P D, LU F Y, LI J L, et al. The dynamic compressive properties of PTFE/Al reactive materials [J]. Chinese Journal of Energetic Materials, 2009, 17(4): 459–462.
|
[6] |
周杰, 何勇, 何源, 等. Al/PTFE/W 反应材料的准静态压缩性能与冲击释能特性 [J]. 含能材料, 2017, 25(11): 903–912.
ZHOU J, HE Y, HE Y, et al. Quasi-static compression properties and impact energy release characteristics of Al/PTFE/W reactive materials [J]. Chinese Jouranal of Energetic Materials, 2017, 25(11): 903–912.
|
[7] |
XIONG W, ZHANG X F, WU Y, et al. Influence of additives on microstructures, mechanical properties and shock-induced reaction characteristics of Al/Ni composites [J]. Journal of Alloys and Compounds, 2015, 648: 540–549. doi: 10.1016/j.jallcom.2015.07.004
|
[8] |
XIONG W, ZHANG X F, TAN M T, et al. The energy release characteristics of shock-induced chemical reaction of Al/Ni composites [J]. Journal of Physical Chemistry C, 2016, 120(43): 24551–24559. doi: 10.1021/acs.jpcc.6b06530
|
[9] |
EAKINS D E, THADHANI N N. Mechanistic aspects of shock-induced reactions in Ni+Al powder mixtures [C]//Shock Compression of Condensed Matter–2007. Waikoloa, HI, 2007.
|
[10] |
AYDELOTTE B B, THADHANI N N. Mechanistic aspects of impact initiated reactions in explosively consolidated metal+aluminum powder mixtures [J]. Materials Science & Engineering A, 2013, 570: 164–171.
|
[11] |
QIAO L, ZHANG X F, HE Y, et al. Mesoscale simulation on the shock compression behaviour of Al-W-Binder granular metal mixtures [J]. Materials & Design, 2013, 47: 341–349.
|
[12] |
GE C, MAIMAITITUERSUN W, DONG Y X, et al. A study on the mechanical properties and impact-induced initiation characteristics of brittle PTFE/Al/W reactive materials [J]. Materials, 2017, 10(5): 452. doi: 10.3390/ma10050452
|
[13] |
SUN Y, LI Q M, LOWE T, et al. Investigation of strain-rate effect on the compressive behaviour of closed-cell aluminium foam by 3D image-based modelling [J]. Materials & Design, 2016, 89: 215–224.
|
[14] |
褚巧龙. 基于Otsu的图像阈值分割算法的研究[D]. 秦皇岛: 燕山大学, 2011.
CHU Q L. Research on image threshold segmentation arithmetic based on Otsu [D]. Qinhuangdao: Yanshan University, 2011.
|
[15] |
袁小翠, 黄志开, 马永力, 等. Otsu阈值分割法特点及其应用分析 [J]. 南昌工程学院学报, 2019, 38(1): 89–94.
YUAN X C, HUANG Z K, MA Y L, et al. Analysis of characteristics and application of Otsu threshold method [J]. Journal of Nanchang Institute of Technology, 2019, 38(1): 89–94.
|
[16] |
JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//7th International Symposium on Ballistics. The Hague, Netherlands, 1983.
|
[17] |
SYSTÈMES D. Abaqus analysis user’s guide [M]. Providence, RI: Dassault Systèmes Simulia Corp, 2014.
|
[18] |
HERBOLD E B, NESTERENKO V F, BENSON D J, et al. Particle size effect on strength, failure, and shock behavior in polytetrafluoroethylene-Al-W granular composite materials [J]. Journal of Applied Physics, 2008, 104(10): 103903. doi: 10.1063/1.3000631
|
[19] |
汤文辉, 张若棋. 物态方程理论及计算概论[M]. 2版. 北京: 高等教育出版, 2008.
TANG W H, ZHANG R Q. Introduction to theory and calculation of equation of state [M]. 2nd ed. Beijing: Higher Education Press, 2008.
|
[20] |
周杰. 典型氟聚物基活性材料冲击反应特性研究[D]. 南京: 南京理工大学, 2018.
ZHOU J. Study on the impact-induced reaction characteristics of typical fluoropolymer-matrix reactive materials [D]. Nanjing: Nanjing University of Science and Technology, 2018.
|
[21] |
GUO J, ZHANG Q M, ZHANG L S, et al. Reaction behavior of polytetrafluoroethylene/Al granular composites subjected to planar shock wave [J]. Propellants Explosives Pyrotechnics, 2017, 42(3): 299–306.
|
[22] |
EAKINS D E, THADHANI N N. Mesoscale simulation of the configuration-dependent shock-compression response of Ni plus Al powder mixtures [J]. Acta Materialia, 2008, 56(7): 1496–1510. doi: 10.1016/j.actamat.2007.12.009
|
[23] |
EAKINS D E, THADHANI N N. Shock compression of reactive powder mixtures [J]. International Materials Reviews, 2009, 54(4): 181–213. doi: 10.1179/174328009X461050
|
[24] |
ZHANG X F, SHI A S, ZHANG J, et al. Thermochemical modeling of temperature controlled shock-induced chemical reactions in multifunctional energetic structural materials under shock compression [J]. Journal of Applied Physics, 2012, 111(12): 123501. doi: 10.1063/1.4729048
|
[25] |
ZHOU J, HE Y, HE Y, et al. Investigation on impact initiation characteristics of fluoropolymer-matrix reactive materials [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(6): 603–615. doi: 10.1002/prep.201700003
|
[26] |
ZHANG X F, QIAO L, SHI A S, et al. A cold energy mixture theory for the equation of state in solid and porous metal mixtures [J]. Journal of Applied Physics, 2011, 110(1): 013506. doi: 10.1063/1.3603018
|
[27] |
何源, 何勇, 张先锋, 等. 疏松金属材料冲击温度理论分析 [J]. 爆炸与冲击, 2012, 32(2): 143–149.
HE Y, HE Y, ZHANG X F, et al. Theoretical analysis on shock temperature of porous metal [J]. Explosion and Shock Waves, 2012, 32(2): 143–149.
|
[28] |
SONG P, CAI L C, WANG Q S, et al. Sound velocity, temperature, melting along the Hugoniot and equation of state for two porosity aluminums [J]. Journal of Applied Physics, 2011, 110(10): 103522. doi: 10.1063/1.3662193
|
[29] |
QIAO L R, ZHANG X F, HE Y D, et al. Multiscale modelling on the shock-induced chemical reactions of multifunctional energetic structural materials [J]. Journal of Applied Physics, 2013, 113(17): 173513. doi: 10.1063/1.4803712
|
[30] |
SRAJ I, SPECHT P E, THADHANI N N, et al. Numerical simulation of shock initiation of Ni/Al multilayered composites [J]. Journal of Applied Physics, 2014, 115(2): 023515. doi: 10.1063/1.4861402
|
[31] |
谈庆明, 黄风雷. 超高速碰撞动力学引论[M]. 北京: 科学出版社, 2000.
TAN Q M, HUANG F L. Introduction to the dynamics of hypervelocity impact [M]. Beijing: Science Press, 2000.
|
[32] |
夏睿全, 张小平. 聚四氟乙烯废料的热解实验 [J]. 化工进展, 2008, 27(1): 98–103.
XIA R Q, ZHANG X P. Experimental study on waste polytetrafluoroethylene pyrolysis [J]. Chemical Industry and Engineering Progress, 2008, 27(1): 98–103.
|
[33] |
李玲琴. 金属/氟聚物反应材料性能的研究[D]. 太原: 中北大学, 2015.
LI L Q. Research on detonation properties of metal-fluoride reactive materials [D]. Taiyuan: North Central University, 2015.
|