Volume 33 Issue 5
Sep 2019
Turn off MathJax
Article Contents
HAN Yang, TIAN Ze, LEI Jianping, LI Zhiqiang. Comparisons between DP780 and DP980 Duplex Steel Beams with Hat-Section under Axial Impact[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055901. doi: 10.11858/gywlxb.20190717
Citation: HAN Yang, TIAN Ze, LEI Jianping, LI Zhiqiang. Comparisons between DP780 and DP980 Duplex Steel Beams with Hat-Section under Axial Impact[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055901. doi: 10.11858/gywlxb.20190717

Comparisons between DP780 and DP980 Duplex Steel Beams with Hat-Section under Axial Impact

doi: 10.11858/gywlxb.20190717
  • Received Date: 21 Jan 2019
  • Rev Recd Date: 08 Mar 2019
  • As the main energy absorbing component of bearing and collision in the automobile and aviation industry, the hat-section beam structure absorbs energy through plastic deformation of its own structure, which is the main criteria for previous safety design. Therefore, it is of great significance to study the deformation characteristics and energy absorption characteristics of the hat-section and thin-walled beam structure under impact load. In this paper, the axial dropping impact tests of DP780 and DP980 duplex steel with hat-section thin-walled beam structures are carried out with a dropping hammer designed by ourselves, and the maximum displacement, peak load, deformation modes and energy absorption are obtained. The results show that the plastic buckling of the upper part of the specimen is formed and the deformation of the lower part is unobvious for DP980 and DP780 hat-section beams under impact loads. The DP980 hat-section beam has less impact deformation and higher residual height, which can be used as the protection structure of anti-impact deformation. The DP780 hat-section beam has more wrinkles produced by final buckling deformation, and its impact time increases and the peak load is much lower, which can be used as the protection structure of anti-impact load. The energy absorption capacity of the DP980 hat-section beam is similar to that of the DP780 hat-section beam. The results provide the basis for the selection of anti-impact performance with thin-walled structure.

     

  • loading
  • [1]
    ABRAMOWICZ W. Thin-walled structures as impact energy absorbers [J]. Thin-Walled Structures, 2003, 41(2): 91–107.
    [2]
    ABEDRABBO N, MAYER R, THOMPSON A, et al. Crash response of advanced high-strength steel tubes: experiment and model [J]. International Journal of Impact Engineering, 2009, 36(8): 1044–1057. doi: 10.1016/j.ijimpeng.2009.02.006
    [3]
    ZHANG X W, SU H, YU T X. Energy absorption of an axially crushed square tube with a buckling initiator [J]. International Journal of Impact Engineering, 2009, 36(3): 402–417. doi: 10.1016/j.ijimpeng.2008.02.002
    [4]
    ALEXANDER J M. An approximate analysis of the collapse of thin cylindrical shells under axial loading [J]. Quarterly Journal of Mechanics & Applied Mathematics, 1960, 13(1): 10–15.
    [5]
    WIERZBICKI T, ABRAMOWICZ W. On the crushing mechanics of thin-walled structures [J]. Journal of Applied Mechanics, 1983, 50(4): 727–734.
    [6]
    WHITE M D, JONES N, ABRAMOWICZ W. A theoretical analysis for the quasi-static axial crushing of top-hat and double-hat thin-walled sections [J]. International Journal of Mechanical Sciences, 1999, 41(2): 209–233. doi: 10.1016/S0020-7403(98)00048-4
    [7]
    WHITE M D, JONES N. A theoretical analysis for the dynamic axial crushing of top-hat and double-hat thin-walled sections [J]. Proceedings of the Institution of Mechanical, 1999, 213(4): 307–325.
    [8]
    TARIGOPULA V, LANGSETH M, HOPPERSTAD O S, et al. Axial crushing of thin-walled high-strength steel sections [J]. International Journal of Impact Engineering, 2006, 32(5): 847–882. doi: 10.1016/j.ijimpeng.2005.07.010
    [9]
    顾纪超, 樊涛, 段利斌, 等. 异材异厚帽型梁结构轴向压溃理论研究 [J]. 汽车工程学报, 2016, 6(4): 252–259. doi: 10.3969/j.issn.2095-1469.2016.04.03

    GU J C, FAN T, DUAN L B, et al. Research on axial crushing theory of hat-section beam with different materials and thickness [J]. Chinese Journal of Automotive Engineering, 2016, 6(4): 252–259. doi: 10.3969/j.issn.2095-1469.2016.04.03
    [10]
    王特捷, 付应乾, 俞鑫炉, 等. 帽型梁落锤轴向冲击实验及有限元分析 [J]. 现代应用物理, 2014(1): 59–62. doi: 10.3969/j.issn.2095-6223.2014.01.011

    WANG T J, FU Y Q, YU X L, et al. Experiment and the finite element analysis for hat-beam structure under axial crash of dropping hammer [J]. Modern Applie Physics, 2014(1): 59–62. doi: 10.3969/j.issn.2095-6223.2014.01.011
    [11]
    李亚, 陈新平, 连昌伟. 双相钢DP600帽型梁碰撞实验与数值模拟 [J]. 精密成形工程, 2017, 9(6): 87–92. doi: 10.3969/j.issn.1674-6457.2017.06.017

    LI Y, CHEN X P, LIAN C W. Collision experiment and numerical simulation on hat-shape beam by dual phase steel DP600 [J]. Journal of Netshape Forming Engineering, 2017, 9(6): 87–92. doi: 10.3969/j.issn.1674-6457.2017.06.017
    [12]
    田泽, 韩阳, 尹晓文, 等. 截面几何参数对帽型梁轴向冲击响应的影响 [J]. 高压物理学报, 2018, 32(5): 94–101. doi: 10.11858/gywlxb.20180521

    TIAN Z, HAN Y, YIN X W, et al. Effect of sectional geometrical parameters of hat-section beam on its axial impact responses [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 94–101. doi: 10.11858/gywlxb.20180521
    [13]
    朱飞鹏, 龚琰, 白鹏翔, 等. 基于二维DIC的脆性材料拉伸应力-应变曲线测定 [J]. 实验力学, 2018, 33(3): 333–342. doi: 10.7520/1001-4888-17-023

    ZHU F P, GONG Y, BAI P X, et al. Determination of tensile stress-strain curve of brittle materials based on two-dimensional digital image correlation [J]. Journal of Experimental Mechanics, 2018, 33(3): 333–342. doi: 10.7520/1001-4888-17-023
    [14]
    江志勇.基于轿车薄壁构件碰撞的变形及吸能特性的仿真与分析 [D]. 武汉: 武汉理工大学, 2009: 41–43.
    [15]
    TANG T, ZHANG W, YIN H, et al. Crushing analysis of thin-walled beams with various section geometries under lateral impact [J]. Thin-Walled Structures, 2016, 102: 43–57. doi: 10.1016/j.tws.2016.01.017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views(8274) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return