Volume 33 Issue 2
Apr 2019
Turn off MathJax
Article Contents
ZHANG Jiawei, LI Qiang, WANG Junpu, HE Duanwei. Effect of Re-Compression on the Pressure-Generation Efficiency and Pressure-Seal Capability of Large Volume Cubic Press[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 020105. doi: 10.11858/gywlxb.20190703
Citation: ZHANG Jiawei, LI Qiang, WANG Junpu, HE Duanwei. Effect of Re-Compression on the Pressure-Generation Efficiency and Pressure-Seal Capability of Large Volume Cubic Press[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 020105. doi: 10.11858/gywlxb.20190703

Effect of Re-Compression on the Pressure-Generation Efficiency and Pressure-Seal Capability of Large Volume Cubic Press

doi: 10.11858/gywlxb.20190703
  • Received Date: 04 Jan 2019
  • Rev Recd Date: 01 Feb 2019
  • With the rapid development of static high-pressure technology, the complex and variable compression processes are used in high-pressure scientific research. However, the effect of compression processes on the pressure-generation efficiency and pressure-seal capability has rarely been studied. Measuring the pressure of a gasket and cell in situ is the key point to understanding the mechanism of pressure-generation and pressure-seal. In the present work, we put a circuit into the cell or gasket of the large volume cubic press, and then the pressure in the compression or re-compression process are independently measured by in situ electric resistance measurements of bismuth, thallium, barium and manganin. It has been found that when compression process was replaced by re-compression process, the pressure-generation efficiency of cell and gasket was lowered; furthermore, the press load at the worst pressure-seal capability was also lowered. The method detailed in this paper is helpful to optimize the high-pressure assembly and compression process for the large volume cubic press.

     

  • loading
  • [1]
    HEMLEY R J, SOOS Z G, HANFLAND M, et al. Charge-transfer states in dense hydrogen charge-transfer states in dense hydrogen [J]. Nature, 1994, 369: 384–387. doi: 10.1038/369384a0
    [2]
    IRIFUNE T, KURIO A, SAKAMOTO S, et al. Ultrahard polycrystalline diamond from graphite [J]. Nature, 2003, 421: 599–600.
    [3]
    MA Y M, EREMETS M, OGANOV A R, et al. Transparent dense sodium [J]. Nature, 2009, 458: 182–185. doi: 10.1038/nature07786
    [4]
    OGANOV A R, ONO S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D” layer [J]. Nature, 2004, 430: 445–448. doi: 10.1038/nature02701
    [5]
    QIN J Q, HE D W, WANG J H, et al. Is rhenium diboride a superhard material? [J]. Advanced Materials, 2008, 20(24): 4780–4783. doi: 10.1002/adma.v20:24
    [6]
    TIAN Y J, XU B, YU D L, et al. Ultrahard nanotwinned cubic boron nitride [J]. Nature, 2013, 493: 385–388. doi: 10.1038/nature11728
    [7]
    XU C, HE D W, WANG H K, et al. Nano-polycrystalline diamond formation under ultra-high pressure [J]. International Journal of Refractory Metals and Hard Materials, 2013, 36: 232–237. doi: 10.1016/j.ijrmhm.2012.09.004
    [8]
    彭放, 贺端威. 应用于高压科学研究的国产铰链式六面顶压机技术发展历程 [J]. 高压物理学报, 2018, 32(1): 010105

    PENG F, HE D W. Development of domestic hinge-type cubic presses based on high pressure scientific research [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010105
    [9]
    GUAN S X, PENG F, LIANG H, et al. Fragmentation and stress diversification in diamond powder under high pressure [J]. Journal of Applied Physics, 2018, 124(21): 215902. doi: 10.1063/1.5051749
    [10]
    LIANG A K, LIU Y J, LIANG H, et al. Thermal insulation performance of monoclinic ZrO2 and cubic ZrO2–CaO solid solution under high pressure and high temperature [J]. High Pressure Research, 2018, 38(4): 458–467. doi: 10.1080/08957959.2018.1517341
    [11]
    WANG P, HE D W, WANG L P, et al. Diamond-cBN alloy: a universal cutting material [J]. Applied Physics Letters, 2015, 107(10): 101901. doi: 10.1063/1.4929728
    [12]
    WU J J, LIU F M, ZHANG J W, et al. Cobalt-doped magnesium oxide pressure-transmitting medium for high pressure and high-temperature apparatus [J]. High Pressure Research, 2018, 38(4): 448–457. doi: 10.1080/08957959.2018.1510922
    [13]
    LIU J, ZHAN G D, WANG Q, et al. Superstrong micro-grained polycrystalline diamond compact through work hardening under high pressure [J]. Applied Physics Letters, 2018, 112(6): 061901. doi: 10.1063/1.5016110
    [14]
    LIU Y J, ZHANG J W, HE D W, et al. Exploring the compression behavior of HP-BiNbO4 under high pressure [J]. Chinese Physics B, 2017, 26(11): 116202. doi: 10.1088/1674-1056/26/11/116202
    [15]
    DING W, HAN J J, HU Q W, et al. Stress control of heterogeneous nanocrystalline diamond sphere through pressure-temperature tuning [J]. Applied Physics Letters, 2017, 110(12): 121908. doi: 10.1063/1.4979006
    [16]
    HAN Q G, MA H A, HUANG G F, et al. Hybrid-anvil: a suitable anvil for large volume cubic high pressure apparatus [J]. Review of Scientific Instruments, 2009, 80(9): 096107. doi: 10.1063/1.3227239
    [17]
    LIU X, CHEN J L, TANG J J, et al. A large volume cubic press with a pressure-generating capability up to about 10 GPa [J]. High Pressure Research, 2012, 32(2): 239–254.
    [18]
    田金刚. 合成钻石: " 黑天鹅”的蜕变和突围 [EB/OL]. (2018-10-25)[2019-01-04]. http://www.gold.org.cn/zb1227/sd/201810/t20181025_180697.html.

    TIAN J G. Synthetic diamonds: the transformation and breakout of " Black swan” [EB/OL]. (2018-10-25)[2019-01-04]. http://www.gold.org.cn/zb1227/sd/201810/t20181025_180697.html.
    [19]
    FANG L M, HE D W, CHEN C, et al. Effect of precompression on pressure-transmitting efficiency of pyrophyllite gaskets [J]. High Pressure Research, 2007, 27(3): 367–374. doi: 10.1080/08957950701553796
    [20]
    ZHANG J W, LIU F M, WU J J, et al. Experimental study on the pressure-generation efficiency and pressure-seal mechanism for large volume cubic press [J]. Review of Scientific Instruments, 2018, 89(7): 075106. doi: 10.1063/1.5030092
    [21]
    SHATSKIY A, KATSURA T, LITASOV K D, et al. High pressure generation using scaled-up Kawai-cell [J]. Physics of the Earth and Planetary Interiors, 2011, 189(1): 92–108.
    [22]
    王海阔, 任瑛, 贺端威, 等. 六面顶压机立方压腔内压强的定量测量及受力分析 [J]. 物理学报, 2017, 66(9): 090702 doi: 10.7498/aps.66.090702

    WANG H K, REN Y, HE D W, et al. Force analysis and pressure quantitative measurement for the high pressure cubic cell [J]. Acta Physica Sinica, 2017, 66(9): 090702 doi: 10.7498/aps.66.090702
    [23]
    WANG H K, HE D W, YAN X Z, et al. Quantitative measurements of pressure gradients for the pyrophyllite and magnesium oxide pressure-transmitting mediums to 8 GPa in a large-volume cubic cell [J]. High Pressure Research, 2011, 31(4): 581–591. doi: 10.1080/08957959.2011.614238
    [24]
    WANG H K, HE D W, TAN N, et al. Note: an anvil-preformed gasket system to extend the pressure range for large volume cubic presses [J]. Review of Scientific Instruments, 2010, 81(11): 116102. doi: 10.1063/1.3488606
    [25]
    WANG H K, HE D W. A hybrid pressure cell of pyrophyllite and magnesium oxide to extend the pressure range for large volume cubic presses [J]. High Pressure Research, 2012, 32(2): 186–194.
    [26]
    KAWAZOE T, NISHIYAMA N, NISHIHARA Y, et al. Pressure generation to 25 GPa using a cubic anvil apparatus with a multi-anvil 6-6 assembly [J]. High Pressure Research, 2010, 30(1): 167–174. doi: 10.1080/08957950903503912
    [27]
    LI R, XU B J, ZHANG Q C, et al. Finite-element analysis on pressure transfer mechanism in large-volume cubic press [J]. High Pressure Research, 2016, 36(4): 575–584. doi: 10.1080/08957959.2016.1238915
    [28]
    MAO H K, BELL P M. Electrical resistivity measurements of conductors in the diamond-window, high-pressure cell [J]. Review of Scientific Instruments, 1981, 52(4): 615–616. doi: 10.1063/1.1136650
    [29]
    ANDERSSON G, SUNDQVIST B, BÄCKSTRÖM G. A high-pressure cell for electrical resistance measurements at hydrostatic pressures up to 8 GPa: results for Bi, Ba, Ni, and Si [J]. Journal of Applied Physics, 1989, 65(10): 3943–3950. doi: 10.1063/1.343360
    [30]
    YAN X Z, REN X T, HE D W. Pressure calibration in solid pressure transmitting medium in large volume press [J]. Review of Scientific Instruments, 2016, 87(12): 125006. doi: 10.1063/1.4973448
    [31]
    SINGH A K. The kinetics of pressure-induced polymorphic transformations [J]. Bulletin of Materials Science, 1983, 5(3): 219–230.
    [32]
    DAVIDSON T E, LEE A P. The study of the structural and transformation characteristics of the pressure-induced polymorphs in bismuth [J]. Transactions of the Metallurgical Society of AIME, 1964, 230: 1035–1036.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(7631) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return