Volume 33 Issue 4
Jul 2019
Turn off MathJax
Article Contents
SONG Wei, XIE Dongsheng, HUANG Tiezheng, SUN Tao, LI Haitao, FAN Zhiqiang. De-Icing Power Line by Linear Shaped Explosive Blast[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045901. doi: 10.11858/gywlxb.20180605
Citation: SONG Wei, XIE Dongsheng, HUANG Tiezheng, SUN Tao, LI Haitao, FAN Zhiqiang. De-Icing Power Line by Linear Shaped Explosive Blast[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045901. doi: 10.11858/gywlxb.20180605

De-Icing Power Line by Linear Shaped Explosive Blast

doi: 10.11858/gywlxb.20180605
  • Received Date: 25 Jul 2018
  • Rev Recd Date: 21 Aug 2018
  • To control the risk of disaster that may be caused by ice-coated power line, a novel de-icing method by applying linear shaped explosive blast has been proposed in the past decade. To investigate the mechanism and the key technology, blast tests on short ice-coated power line are performed as well as corresponding LS-DYNA simulations. The effects of blast parameters on de-icing efficiency are also discussed. Results show that, ice on the blast side immediately crush while through-wall cracks appear in the other side ice which then fractures or falls from the line. The blast energy rapidly attenuates from the weakly constrained side of ice when the detonation cord is placed outside of the ice. As a consequence, in order to de-ice with high efficiency, the gap between conductor and detonation cord should be optimized according to estimation ice coating thickness to ensure that the detonation cord is located within the ice coating.

     

  • loading
  • [1]
    韩军科, 杨靖波, 杨风利. 500 kV酒杯塔覆冰破坏形态分析 [J]. 电力建设, 2009, 30(11): 21–23.

    HAN J K, YANG J B, YANG F L. Analysis of failure mode on iced 500 kV transmission cup type tower [J]. Electric Power Construction, 2009, 30(11): 21–23.
    [2]
    陈科全, 严波, 吕欣, 等. 四分裂导线机械式除冰装置及可行性研究 [J]. 振动与冲击, 2013, 32(20): 48–54. doi: 10.3969/j.issn.1000-3835.2013.20.010

    CHEN K Q, YAN B, LÜ X, et al. A mechanical de-icing device for iced quad-bundled conductors and its feasibility [J]. Journal of Vibration and Shock, 2013, 32(20): 48–54. doi: 10.3969/j.issn.1000-3835.2013.20.010
    [3]
    向往, 谭艳军, 陆佳政, 等. 交直流输电线路热力融冰技术分析 [J]. 电力建设, 2014, 35(8): 101–107. doi: 10.3969/j.issn.1000-7229.2014.08.018

    XIANG W, TAN Y J, LU J Z, et al. Thermodynamic ice-melting technology for AC/DC transmission lines [J]. Electric Power Construction, 2014, 35(8): 101–107. doi: 10.3969/j.issn.1000-7229.2014.08.018
    [4]
    谷山强, 陈家宏, 蔡炜, 等. 输电线路激光除冰技术试验分析及工程应用设计 [J]. 高压电技术, 2009, 35(9): 2243–2249.

    GU S Q, CHEN J H, CAI W, et al. Experimental analysis and engineering designing of laser de-icing technology for transmission lines [J]. High Voltage Engineering, 2009, 35(9): 2243–2249.
    [5]
    LI Q Y, BAI T, ZHU C L. Deicing excitation simulation and structural dynamic analysis of the electro-impulse deicing system [J]. Applied Mechanics and Materials, 2011, 66/68: 390–395. doi: 10.4028/www.scientific.net/AMM.66-68
    [6]
    范志强, 马宏昊, 沈兆武, 等. 水下连续脉冲冲击波的声学特性 [J]. 爆炸与冲击, 2013, 33(5): 501–506. doi: 10.3969/j.issn.1001-1455.2013.05.008

    FAN Z Q, MA H H, SHEN Z W, et al. Acoustic characteristics of underwater continuous pulse shock wave [J]. Explosion and Shock Waves, 2013, 33(5): 501–506. doi: 10.3969/j.issn.1001-1455.2013.05.008
    [7]
    贾虎, 沈兆武. 纤维爆炸索水下爆炸声信号特征的小波分析 [J]. 振动与冲击, 2011, 30(9): 243–247. doi: 10.3969/j.issn.1000-3835.2011.09.050

    JIA H, SHEN Z W. Characteristics of underwater detonation acoustics signals of fiber-based detonating cord based on wavelet analysis and power spectrum [J]. Journal of Vibration and Shock, 2011, 30(9): 243–247. doi: 10.3969/j.issn.1000-3835.2011.09.050
    [8]
    Livermore Software Technology Corporation. LS-DYNA keyword user’s manual [Z]. Livermore, CA: Livermore Software Technology Corporation, 2015.
    [9]
    丁金波, 董威. 表面粗糙度对冰冻黏强度影响试验研究 [J]. 航空发动机, 2012, 38(4): 42–46. doi: 10.3969/j.issn.1672-3147.2012.04.011

    DING J B, DONG W. Experimental study of influence of surface roughness on ice adhesion [J]. Aeroengine, 2012, 38(4): 42–46. doi: 10.3969/j.issn.1672-3147.2012.04.011
    [10]
    TAVANA H, NEUMANN A W. Recent progress in the determination of solid surface tensions from contact angles [J]. Advances in Colloid and Interface Science, 2007, 132(1): 1–32. doi: 10.1016/j.cis.2006.11.024
    [11]
    王国刚, 穆静静, 周红伟, 等. 覆冰垂直粘结强度的测试研究 [J]. 工程热物理学报, 2012, 33(2): 282–284.

    WANG G G, MU J J, ZHOU H W, et al. Research on the test technology for vertical ice adhesion strength [J]. Journal of Engineering Thermophysics, 2012, 33(2): 282–284.
    [12]
    HU Z K, GUI H B, XIA P P, et al. Dynamic response analys is of the collision between ice and propeller at high speed [C]//The Society for Underwater Technology Conference (SUTTC 2013). Shanghai, China, 2013: 72–76.
    [13]
    XIA P P, GUI H B, HU Z K. The effect of the excitation position on the sound radiation of propeller [C]//The Society for Underwater Technology Conference (SUTTC 2013). Shanghai, China, 2013: 82–86.
    [14]
    JONES S J. A review of the strength of iceberg and other freshwater ice and the effect of temperature [J]. Cold Regions Science & Technology, 2007, 47(3): 256–262.
    [15]
    ZHANG L M, LI Z J, JIA Q, et al. Uniaxial compressive strengths of artificial freshwater ice [J]. Advanced Materials Research, 2011, 243: 4634–4637.
    [16]
    李志军, 周庆, 汪恩良, 等. 加载方式对冰单轴压缩强度影响的试验研究 [J]. 水利学报, 2013, 44(9): 1037–1043.

    LI Z J, ZHOU Q, WANG E L, et al. Experimental study on the loading mode effects on the ice uniaxial compressive strength [J]. Journal of Hydraulic Engineering, 2013, 44(9): 1037–1043.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views(5022) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return