Volume 32 Issue 1
Dec 2017
Turn off MathJax
Article Contents
XIE Mengyu, LU Yafei, ZOU Xinyu, DENG Liwei. Water Diffusion in Olivine under Lunar Mantle Conditions[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 011201. doi: 10.11858/gywlxb.20170645
Citation: XIE Mengyu, LU Yafei, ZOU Xinyu, DENG Liwei. Water Diffusion in Olivine under Lunar Mantle Conditions[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 011201. doi: 10.11858/gywlxb.20170645

Water Diffusion in Olivine under Lunar Mantle Conditions

doi: 10.11858/gywlxb.20170645
  • Received Date: 21 Sep 2017
  • Rev Recd Date: 30 Sep 2017
  • High-pressure water diffusion experiments in olivine crystal were conducted in a piston-cylinder press in the present work to investigate systematically the diffusion coefficients of water in view of changes of pressure, temperature and oxygen fugacity.It was found that diffusion coefficients increase with elevated temperatures and decreased pressures, and become relatively larger at high oxygen fugacity.The rate of the diffusion along [100] axis is faster than that along [001] axis and the anisotropy becomes weaker with the increase of the pressure.The measured hydroxyl concentrations in the olivine under lunar mantle conditions are higher than 10-4, thus indicating that the olivine could be a major water reservoir in the deep lunar mantle.By comparing the diffusion rate of the water in the olivine melt inclusions with the magma ascent and the eruption rates, we found that the water in the melt inclusions in the olivine xenocrysts will be well maintained during the magma ascent, whereas water will diffuse out of the xenocrysts during the magma eruption process.The estimated water concentration in the lunar mantle based on the melt inclusion data could be the lower limit.Our work provides significant thermodynamic parameters for exploring the moon evolution history.

     

  • loading
  • [1]
    CANUP R M.Dynamics of lunar formation[J].Annual Review of Astronomy & Astrophysics, 2004, 42(1):441-475. doi: 10.1146/annurev.astro.41.082201.113457?src=recsys
    [2]
    TAYLOR S R, PIETERS C M, MACPHERSON G J.Earth-moon system, planetary science, and lessons learned[J].Reviews in Mineralogy and Geochemistry, 2006, 60(1):657-704. doi: 10.2138/rmg.2006.60.7
    [3]
    SHEARER C K, HESS P C, WIECZOREK M A, et al.Thermal and magmatic evolution of the Moon[J].Reviews in Mineralogy and Geochemistry, 2006, 60(1):365-518. doi: 10.2138/rmg.2006.60.4
    [4]
    SAAL A E, HAURI E H, CASCIO M L, et al.Volatile content of lunar volcanic glasses and the presence of water in the Moon's interior[J].Nature, 2008, 454(7201):192-195. doi: 10.1038/nature07047
    [5]
    BOYCE J W, LIU Y, ROSSMAN G R, et al.Lunar apatite with terrestrial volatile abundances[J].Nature, 2010, 466(7305):466-469. doi: 10.1038/nature09274
    [6]
    MCCUBBIN F M, STEELE A, HAURI E H, et al.Nominally hydrous magmatism on the Moon[J].Proceedings of the National Academy of Sciences, 2010, 107(25):11223-11228. doi: 10.1073/pnas.1006677107
    [7]
    GREENWOOD J P, ITOH S, SAKAMOTO N, et al.Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon[J].Nature Geoscience, 2011, 4(2):79-82. doi: 10.1038/ngeo1050
    [8]
    HAURI E H, WEINREICH T, SAAL A E, et al.High pre-eruptive water contents preserved in lunar melt inclusions[J].Science, 2011, 333(6039):213-215. doi: 10.1126/science.1204626
    [9]
    BARNES J J, FRANCHI I A, ANAND M, et al.Accurate and precise measurements of the D/H ratio and hydroxyl content in lunar apatites using NanoSIMS[J].Chemical Geology, 2013, 337:48-55. https://www.sciencedirect.com/science/article/pii/S000925411200589X
    [10]
    TARTÈSE R, ANAND M, BARNES J J, et al.The abundance, distribution, and isotopic composition of hydrogen in the Moon as revealed by basaltic lunar samples:implications for the volatile inventory of the Moon[J].Geochimica et Cosmochimica Acta, 2013, 122:58-74. doi: 10.1016/j.gca.2013.08.014
    [11]
    TARTÈSE R, ANAND M.Late delivery of chondritic hydrogen into the lunar mantle:insights from mare basalts[J].Earth and Planetary Science Letters, 2013, 361:480-486. doi: 10.1016/j.epsl.2012.11.015
    [12]
    BARNES J J, TARTÈSE R, ANAND M, et al.The origin of water in the primitive Moon as revealed by the lunar highlands samples[J].Earth and Planetary Science Letters, 2014, 390:244-252. doi: 10.1016/j.epsl.2014.01.015
    [13]
    CHEN Y, ZHANG Y X, LIU Y, et al.Water, fluorine, and sulfur concentrations in the lunar mantle[J].Earth and Planetary Science Letters, 2015, 427:37-46. doi: 10.1016/j.epsl.2015.06.046
    [14]
    GOSWAMI J N.Water in the lunar interior[J].Current Science, 2016, 110(8):1536-1539. http://adsabs.harvard.edu/abs/2014AGUFM.V31A4713H
    [15]
    李霓, 吴树青.熔融包裹体及其挥发分研究概况及分析方法简析[J].地球与环境, 2004, 32(3):14-20. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200002001.htm

    LI N, WU S Q.Progress in the study of melt inclusions & their volatiles and analysis methods [J].Earth and Environment, 2004, 32(3):14-20. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200002001.htm
    [16]
    PORTNYAGIN M, ALMEEV R, MATVEEV S, et al.Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma[J].Earth and Planetary Science Letters, 2008, 272(3):541-552. https://www.sciencedirect.com/science/article/pii/S0012821X08003476
    [17]
    JOHNSON E R, WALLACE P J, CASHMAN K V, et al.Magmatic volatile contents and degassing-induced crystallization at Volcán Jorullo, Mexico:implications for melt evolution and the plumbing systems of monogenetic volcanoes[J].Earth and Planetary Science Letters, 2008, 269(3):478-487. https://www.sciencedirect.com/science/article/pii/S0012821X08001593
    [18]
    HU S, LIN Y, ZHANG J, et al.NanoSIMS analyses of apatite and melt inclusions in the GRV 020090 Martian meteorite:hydrogen isotope evidence for recent past underground hydrothermal activity on Mars[J].Geochimica et Cosmochimica Acta, 2014, 140:321-333. doi: 10.1016/j.gca.2014.05.008
    [19]
    GAETANI G A, GROVE T L.The influence of water on melting of mantle peridotite[J].Contributions to Mineralogy and Petrology, 1998, 131(4):323-346. doi: 10.1007/s004100050396
    [20]
    YOSHINO T, MATSUZAKI T, SHATSKIY A, et al.The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle[J].Earth and Planetary Science Letters, 2009, 288(1):291-300. https://www.sciencedirect.com/science/article/pii/S0012821X09005664
    [21]
    REGENAUER-LIEB, KOHL T.Water solubility and diffusivity in olivine:its role in planetary tectonics[J].Mineralogical Magazine, 2003, 67(4):697-715. doi: 10.1180/0026461036740128
    [22]
    DEMOUCHY S, MACKWELL S.Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine[J].Physics and Chemistry of Minerals, 2006, 33(5):347-355. doi: 10.1007/s00269-006-0081-2
    [23]
    O'NEILL H S C.Free energies of formation of NiO, CoO, Ni2SiO4 and Co2SiO4[J].American Mineralogist, 1987, 72:280-291. doi: 10.1007/BF00310701
    [24]
    O'NEILL H S C, POWNCEBY M I.Thermodynamic data from redox reactions at high temperatures.Ⅱ.the MnO-Mn3O4 oxygen buffer, and implications for the thermodynamic properties of MnO and Mn3O4[J].Contributions to Mineralogy and Petrology, 1993, 114(3):315-320. doi: 10.1007/BF01046534
    [25]
    BROMILEY G D, KEPPLER H.An experimental investigation of hydroxyl solubility in jadeite and Na-rich clinopyroxenes[J].Contributions to Mineralogy and Petrology, 2004, 147(2):189-200. doi: 10.1007/s00410-003-0551-1
    [26]
    MACKWELL S J, KOHLSTEDT D L.Diffusion of hydrogen in olivine:implications for water in the mantle[J].Journal of Geophysical Research:Solid Earth, 1990, 95(B4):5079-5088. doi: 10.1029/JB095iB04p05079
    [27]
    PATERSON M S.The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials[J].Bull Mineral, 1982, 105:20-29. http://ci.nii.ac.jp/naid/80001179570/
    [28]
    KOHLSTEDT D L, MACKWELL S J.Diffusion of hydrogen and intrinsic point defects in olivine[J].Zeitschrift für Physikalische Chemie, 1998, 207(1/2):147-162. https://experts.umn.edu/en/publications/diffusion-of-hydrogen-and-intrinsic-point-defects-in-olivine
    [29]
    张培培, 刘佳.橄榄石中H的结合机制及扩散行为[J].岩石矿物学杂志, 2013, 32(5):708-732. http://www.cqvip.com/QK/94932X/201305/47454445.html

    ZHANG P P, LIU J.The incorporation mechanisms and diffusion kinetics of hydrogen in olivine[J].Acta Petrologica et Mineralogica, 2013, 32(5):708-732. http://www.cqvip.com/QK/94932X/201305/47454445.html
    [30]
    MATVEEV S, O'NEILL H S C, BALLHAUS C, et al.Effect of silica activity on OH- IR spectra of olivine:implications for low-aSiO2 mantle metasomatism[J].Journal of Petrology, 2001, 42(4):721-729. doi: 10.1093/petrology/42.4.721
    [31]
    BAI Q, KOHLSTEDT D L.Effects of chemical environment on the solubility and incorporation mechanism for hydrogen in olivine[J].Physics and Chemistry of Minerals, 1993, 19(7):460-471. doi: 10.1007/BF00203186
    [32]
    LEMAIRE C, KOHN S C, BROOKER R A.The effect of silica activity on the incorporation mechanisms of water in synthetic forsterite:a polarised infrared spectroscopic study[J].Contributions to Mineralogy and Petrology, 2004, 147(1):48-57. doi: 10.1007/s00410-003-0539-x
    [33]
    ZHAO Y H, GINSBERG S B, KOHLSTEDT D L.Solubility of hydrogen in olivine:dependence on temperature and iron content[J].Contributions to Mineralogy and Petrology, 2004, 147(2):155-161. doi: 10.1007/s00410-003-0524-4
    [34]
    BERRY A J, HERMANN J, O'NEILL H S C, et al.Fingerprinting the water site in mantle olivine[J].Geology, 2005, 33(11):869-872. doi: 10.1130/G21759.1
    [35]
    MATVEEV S, PORTNYAGIN M, BALLHAUS C, et al.FTIR spectrum of phenocryst olivine as an indicator of silica saturation in magmas[J].Journal of Petrology, 2004, 46(3):603-614. doi: 10.1093/petrology/egh090
    [36]
    DEMOUCHY S, JACOBSEN S D, GAILLARD F, et al.Rapid magma ascent recorded by water diffusion profiles in mantle olivine[J].Geology, 2006, 34(6):429-432. doi: 10.1130/G22386.1
    [37]
    GRANT K J, KOHN S C, BROOKER R A.Solubility and partitioning of water in synthetic forsterite and enstatite in the system MgO-SiO2-H2O±Al2O3[J].Contributions to Mineralogy and Petrology, 2006, 151(6):651-664. doi: 10.1007/s00410-006-0082-7
    [38]
    GRANT K J, BROOKER R A, KOHN S C, et al.The effect of oxygen fugacity on hydroxyl concentrations and speciation in olivine:implications for water solubility in the upper mantle[J].Earth and Planetary Science Letters, 2007, 261(1):217-229. https://www.sciencedirect.com/science/article/pii/S0012821X07004189
    [39]
    WALKER A M, HERMANN J, BERRY A J, et al.Three water sites in upper mantle olivine and the role of titanium in the water weakening mechanism[J].Journal of Geophysical Research:Solid Earth, 2007, 112(B5):B004620. https://openresearch-repository.anu.edu.au/handle/1885/33680
    [40]
    KOVÁCS I, O'NEILL H S C, HERMANN J, et al.Site-specific infrared OH absorption coefficients for water substitution into olivine[J].American Mineralogist, 2010, 95(2/3):292-299. http://adsabs.harvard.edu/abs/2010AmMin..95..292K
    [41]
    INGRIN J, LIU J, DEPECKER C, et al.Low-temperature evolution of OH bands in synthetic forsterite, implication for the nature of H defects at high pressure[J].Physics and Chemistry of Minerals, 2013, 40(6):499-510. doi: 10.1007/s00269-013-0587-3
    [42]
    DEMOUCHY S, THORAVAL C, BOLFAN-CASANOVA N, et al.Diffusivity of hydrogen in iron-bearing olivine at 3 GPa[J].Physics of the Earth and Planetary Interiors, 2016, 260:1-13. doi: 10.1016/j.pepi.2016.08.005
    [43]
    DEMOUCHY S, MACKWELL S.Water diffusion in synthetic iron-free forsterite[J].Physics and Chemistry of Minerals, 2003, 30(8):486-494. doi: 10.1007/s00269-003-0342-2
    [44]
    SMITH D E, ZUBER M T, NEUMANN G A, et al.Topography of the Moon from the Clementine lidar[J].Journal of Geophysical Research:Planets, 1997, 102(E1):1591-1611. doi: 10.1029/96JE02940
    [45]
    WIECZOREK M A, JOLLIFF B L, KHAN A, et al.The constitution and structure of the lunar interior[J].Reviews in Mineralogy and Geochemistry, 2006, 60(1):221-364. doi: 10.2138/rmg.2006.60.3
    [46]
    WEBER R C, LIN P Y, GARNERO E J, et al.Seismic detection of the lunar core[J].Science, 2011, 331(6015):309-312. doi: 10.1126/science.1199375
    [47]
    HESS P C, PARMENTIER E M.A model for the thermal and chemical evolution of the Moon's interior:implications for the onset of mare volcanism[J].Earth and Planetary Science Letters, 1995, 134(3/4):501-514. http://www.sciencedirect.com/science/article/pii/0012821X95001383
    [48]
    ZIETHE R, SEIFERLIN K, HIESINGER H.Duration and extent of lunar volcanism:comparison of 3D convection models to mare basalt ages[J].Planetary and Space Science, 2009, 57(7):784-796. doi: 10.1016/j.pss.2009.02.002
    [49]
    TAYLOR S R, JAKES P. The geochemical evolution of the Moon[C]//Lunar and Planetary Science Conference Proceedings, 1974, 5: 1287-1305.
    [50]
    SNYDER G A, TAYLOR L A, NEAL C R.A chemical model for generating the sources of mare basalts:combined equilibrium and fractional crystallization of the lunar magmasphere[J].Geochimica et Cosmochimica Acta, 1992, 56(10):3809-3823. doi: 10.1016/0016-7037(92)90172-F
    [51]
    LONGHI J.A new view of lunar ferroan anorthosites:postmagma ocean petrogenesis[J].Journal of Geophysical Research:Planets, 2003, 108(E8):5083. doi: 10.1029/2002JE001941
    [52]
    ELARDO S M, DRAPER D S, SHEARER C K.Lunar Magma Ocean crystallization revisited:bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite[J].Geochimica et Cosmochimica Acta, 2011, 75(11):3024-3045. doi: 10.1016/j.gca.2011.02.033
    [53]
    YAMAMOTO S, NAKAMURA R, MATSUNAGA T, et al.Possible mantle origin of olivine around lunar impact basins detected by SELENE[J].Nature Geoscience, 2010, 3(8):533-536. doi: 10.1038/ngeo897
    [54]
    LIN Y H, TRONCHE E J, STEENSTRA E S, et al.Evidence for an early wet Moon from experimental crystallization of the lunar magma ocean[J].Nature Geoscience, 2016, 10(1):14-18. http://www.nature.com/ngeo/journal/v10/n1/ngeo2845/metrics
    [55]
    LIN Y, TRONCHE E J, STEENSTRA E S, et al.Experimental constraints on the solidification of a nominally dry lunar magma ocean[J].Earth and Planetary Science Letters, 2017, 471:104-116. doi: 10.1016/j.epsl.2017.04.045
    [56]
    WADHWA M.Redox conditions on small bodies, the Moon and Mars[J].Reviews in Mineralogy and Geochemistry, 2008, 68(1):493-510. doi: 10.2138/rmg.2008.68.17
    [57]
    蒙伟娟, 陈祖安, 白武明.地幔柱与岩石圈相互作用过程的数值模拟[J].地球物理学报, 2015, 58(2):495-503. doi: 10.6038/cjg20150213

    MENG W J, CHEN Z A, BAI W M.Numerical simulation on process of the plume-lithosphere interaction[J].Chinese Journal of Geophysics, 2015, 58(2):495-503. doi: 10.6038/cjg20150213
    [58]
    WIECZOREK M A.The interior structure of the moon:what does geophysics have to say?[J].Elements, 2009, 5(1):35-40. doi: 10.2113/gselements.5.1.35
    [59]
    SPERA F J.Aspects of magma transport[M].New Jersey:Princeton University Press, 1980:265-323.
    [60]
    SELVERSTONE J, STERN C R.Petrochemistry and recrystallization history of granulite xenoliths from the Pali-Aike volcanic field, Chile[J].American Mineralogist, 1983, 68(11/12):1102-1112.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views(9335) PDF downloads(156) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return