基于吉布斯热力学曲面理论的镁橄榄石熔融计算研究

赵轩 尹坤

赵轩, 尹坤. 基于吉布斯热力学曲面理论的镁橄榄石熔融计算研究[J]. 高压物理学报, 2025, 39(10): 100101. doi: 10.11858/gywlxb.20251130
引用本文: 赵轩, 尹坤. 基于吉布斯热力学曲面理论的镁橄榄石熔融计算研究[J]. 高压物理学报, 2025, 39(10): 100101. doi: 10.11858/gywlxb.20251130
ZHAO Xuan, YIN Kun. A Gibbs Thermodynamic Surface Approach to Modeling the Melting of Forsterite[J]. Chinese Journal of High Pressure Physics, 2025, 39(10): 100101. doi: 10.11858/gywlxb.20251130
Citation: ZHAO Xuan, YIN Kun. A Gibbs Thermodynamic Surface Approach to Modeling the Melting of Forsterite[J]. Chinese Journal of High Pressure Physics, 2025, 39(10): 100101. doi: 10.11858/gywlxb.20251130

基于吉布斯热力学曲面理论的镁橄榄石熔融计算研究

doi: 10.11858/gywlxb.20251130
基金项目: 国家自然科学基金(41972036);国家重点研发计划(2024YFF0807500)
详细信息
    作者简介:

    赵 轩(2000-),男,硕士研究生,主要从事计算矿物物理研究. E-mail:zhaoxuane@outlook.com

    通讯作者:

    尹 坤(1982-),男,博士,副研究员,主要从事计算矿物物理研究. E-mail:yinkun@cdut.edu.cn

  • 中图分类号: O521.2; P311.9

A Gibbs Thermodynamic Surface Approach to Modeling the Melting of Forsterite

  • 摘要: 熔融过程在地球与其他行星的演化中发挥着重要作用。由于行星内部普遍处于高压环境,研究物质在高压条件下的熔融行为对于理解其组成及内部动力学过程至关重要。为此,在吉布斯热力学曲面理论及前人工作的基础上,结合第一性原理分子动力学模拟,通过构建几何模型,获得了镁橄榄石在0~16 GPa压力范围内的熔融数据。该方法能够在有限的计算资源下高效且准确地获取特定压力范围内任意点的熔融数据,包括固相和熔体相各自的吉布斯自由能、亥姆霍兹自由能、焓、内能、熵和体积。同时,使用该方法确定了镁橄榄石和瓦兹利石在12002500 K内的相变边界。所有计算结果均与已有实验及计算数据高度一致,验证了该方法在计算高压下物质的熔化行为的可靠性和准确性。该方法突破了现有方法在有限计算资源下难以高效获取完整高压熔融数据的瓶颈。

     

  • 图  吉布斯热力学曲面示意图

    Figure  1.  Schematic diagram of Gibbs thermodynamic surface

    图  橄榄石单胞

    Figure  2.  Unit cell of olivine

    图  镁橄榄石在不同温度下的径向分布函数(V/V0=1.0)

    Figure  3.  Radial distribution functions of forsterite at various temperatures (V/V0=1.0)

    图  2.0~10.0 GPa压力范围内镁橄榄石的4种热力学势相图

    Figure  4.  Projection diagrams of four thermodynamic potentials in the range of 2.0 to 12.0 GPa for forsterite

    图  镁橄榄石的熔化曲线

    Figure  5.  Melting curves of forsterite

    图  镁橄榄石和瓦兹利石的相变边界

    Figure  6.  Phase boundary between forsterite and wadsleyite

    表  1  镁橄榄石的熔融数据

    Table  1.   Melting data of forsterite

    p/GPa Tm/K Phase V/(Å3/atom) G/(eV/atom) A/(eV/atom) H/(eV/atom) U/(eV/atom) S/(μeV·K−1/atom)
    0.5 2195 Solid 11.357 −6.597 −6.633 −6.538 −6.574 27
    0.5 2195 Liquid 12.540 −6.583 −6.622 −6.373 −6.412 102
    1.0 2232 Solid 11.310 −6.563 −6.634 −6.496 −6.567 30
    1.0 2232 Liquid 12.365 −6.550 −6.627 −6.318 −6.395 110
    2.0 2295 Solid 11.214 −6.495 −6.635 −6.416 −6.556 34
    2.0 2295 Liquid 12.109 −6.487 −6.638 −6.210 −6.361 124
    3.0 2363 Solid 11.125 −6.428 −6.636 −6.335 −6.543 39
    3.0 2363 Liquid 11.908 −6.425 −6.648 −6.111 −6.334 135
    4.0 2411 Solid 11.125 −6.428 −6.636 −6.335 −6.543 39
    4.0 2411 Liquid 11.908 −6.425 −6.648 −6.111 −6.334 135
    6.0 2469 Solid 10.834 −6.226 −6.632 −6.122 −6.528 42
    6.0 2469 Liquid 11.377 −6.225 −6.651 −5.876 −6.302 142
    8.0 2529 Solid 10.657 −6.095 −6.627 −5.985 −6.517 43
    8.0 2529 Liquid 11.088 −6.094 −6.647 −5.731 −6.285 143
    9.0 2555 Solid 10.573 −6.030 −6.623 −5.918 −6.512 44
    9.0 2555 Liquid 10.957 −6.029 −6.644 −5.662 −6.277 144
    10.0 2579 Solid 10.492 −5.965 −6.620 −5.852 −6.507 44
    10.0 2579 Liquid 10.834 −5.964 −6.641 −5.593 −6.270 144
    11.0 2630 Solid 10.424 −5.902 −6.618 −5.779 −6.494 47
    11.0 2630 Liquid 10.731 −5.905 −6.641 −5.517 −6.254 148
    13.0 2634 Solid 10.261 −5.773 −6.606 −5.660 −6.493 43
    13.0 2634 Liquid 10.503 −5.773 −6.625 −5.397 −6.249 143
    14.0 2649 Solid 10.189 −5.710 −6.600 −5.598 −6.488 42
    14.0 2649 Liquid 10.404 −5.710 −6.619 −5.333 −6.242 142
    16.0 2672 Solid 10.051 −5.585 −6.588 −5.475 −6.479 41
    16.0 2672 Liquid 10.219 −5.585 −6.605 −5.209 −6.230 140
    下载: 导出CSV

    表  2  镁橄榄石-瓦兹利石相变边界热力学数据

    Table  2.   Data for phase boundary between forsterite and wadsleyite

    p/GPa T/K Phase V/(Å3/atom) G/(eV/atom) A/(eV/atom) H/(eV/atom) U/(eV/atom) S/(μeV·K−1/atom)
    13.84 1200 Fo 9.850 −5.800 −6.651 −6.010 −6.861 −178
    13.84 1200 Wd 9.259 −5.800 −6.600 −6.024 −6.824 −186
    13.92 1300 Fo 9.860 −5.778 −6.635 −5.978 −6.834 −156
    13.92 1300 Wd 9.277 −5.778 −6.584 −5.992 −6.798 −164
    14.01 1400 Fo 9.870 −5.757 −6.621 −5.945 −6.808 −135
    14.01 1400 Wd 9.296 −5.757 −6.570 −5.959 −6.772 −144
    14.12 1500 Fo 9.882 −5.738 −6.608 −5.911 −6.781 −116
    14.12 1500 Wd 9.315 −5.738 −6.558 −5.926 −6.747 −125
    14.25 1600 Fo 9.893 −5.718 −6.598 −5.875 −6.755 −98
    14.25 1600 Wd 9.333 −5.718 −6.549 −5.891 −6.721 −108
    14.41 1700 Fo 9.904 −5.699 −6.590 −5.838 −6.729 −82
    14.41 1700 Wd 9.352 −5.699 −6.540 −5.854 −6.695 −91
    14.60 1800 Fo 9.913 −5.680 −6.583 −5.799 −6.702 −66
    14.60 1800 Wd 9.368 −5.680 −6.534 −5.816 −6.670 −76
    14.83 1900 Fo 9.922 −5.660 −6.578 −5.757 −6.676 −51
    14.83 1900 Wd 9.383 −5.660 −6.528 −5.776 −6.644 −61
    15.09 2000 Fo 9.930 −5.639 −6.574 −5.714 −6.650 −38
    15.09 2000 Wd 9.395 −5.639 −6.524 −5.733 −6.618 −47
    15.36 2100 Fo 9.937 −5.619 −6.572 −5.670 −6.623 −24
    15.36 2100 Wd 9.405 −5.619 −6.521 −5.690 −6.592 −34
    15.65 2200 Fo 9.944 −5.599 −6.571 −5.626 −6.597 −12
    15.65 2200 Wd 9.413 −5.599 −6.519 −5.647 −6.566 −21
    15.94 2300 Fo 9.951 −5.581 −6.571 −5.582 −6.571 0
    15.94 2300 Wd 9.419 −5.581 −6.518 −5.603 −6.540 −10
    16.21 2400 Fo 9.960 −5.564 −6.572 −5.538 −6.546 11
    16.21 2400 Wd 9.425 −5.564 −6.518 −5.560 −6.513 2
    16.47 2500 Fo 9.970 −5.550 −6.575 −5.496 −6.520 22
    16.47 2500 Wd 9.429 −5.550 −6.519 −5.518 −6.487 13
    下载: 导出CSV
  • [1] MAO H K, CHEN X J, DING Y, et al. Solids, liquids, and gases under high pressure [J]. Reviews of Modern Physics, 2018, 90(1): 015007. doi: 10.1103/RevModPhys.90.015007
    [2] XU M L, LI Y W, MA Y M. Materials by design at high pressures [J]. Chemical Science, 2022, 13(2): 329–344. doi: 10.1039/D1SC04239D
    [3] SAKAIRI T, OHTANI E, KAMADA S, et al. Melting relations in the Fe-S-Si system at high pressure and temperature: implications for the planetary core [J]. Progress in Earth and Planetary Science, 2017, 4(1): 10. doi: 10.1186/s40645-017-0125-x
    [4] HU J P, SHARP T G. Formation, preservation and extinction of high-pressure minerals in meteorites: temperature effects in shock metamorphism and shock classification [J]. Progress in Earth and Planetary Science, 2022, 9(1): 6. doi: 10.1186/s40645-021-00463-2
    [5] 贺芝宇, 黄秀光, 舒桦, 等. 冰巨行星内部深处物理与化学过程研究进展 [J]. 高压物理学报, 2023, 37(5): 050105. doi: 10.11858/gywlxb.20230721

    HE Z Y, HUANG X G, SHU H, et al. Progress on physical and chemical processes deep inside ice giants [J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 050105. doi: 10.11858/gywlxb.20230721
    [6] YIN K, BELONOSHKO A B, LI Y H, et al. Davemaoite as the mantle mineral with the highest melting temperature [J]. Science Advances, 2023, 9(49): eadj2660. doi: 10.1126/sciadv.adj2660
    [7] KATSURA T. Phase relations of bridgmanite, the most abundant mineral in the Earth’s lower mantle [J]. Communications Chemistry, 2025, 8(1): 28. doi: 10.1038/s42004-024-01389-8
    [8] LI J, WU Q, LI J B, et al. Shock melting curve of iron: a consensus on the temperature at the Earth’s inner core boundary [J]. Geophysical Research Letters, 2020, 47(15): e2020GL087758. doi: 10.1029/2020GL087758
    [9] 王宝云, 肖万生, 宋茂双. δ-(Al, Fe)OOH的高压相变 [J]. 高压物理学报, 2021, 35(6): 061201. doi: 10.11858/gywlxb.20210765

    WANG B Y, XIAO W S, SONG M S. Pressure-induced phase transitions in δ-(Al, Fe)OOH [J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 061201. doi: 10.11858/gywlxb.20210765
    [10] 姜昌国, 谭大勇, 谢亚飞, 等. 高压剪切作用下三水铝石的结构稳定性 [J]. 高压物理学报, 2022, 36(1): 011202. doi: 10.11858/gywlxb.20210766

    JIANG C G, TAN D Y, XIE Y F, et al. Investigation on structural stability of γ-Al(OH)3 under high pressure and shear stress [J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 011202. doi: 10.11858/gywlxb.20210766
    [11] 陈炜珊, 谭毅, 谭大勇, 等. NaPO3高压结构行为的第一性原理理论研究 [J]. 高压物理学报, 2024, 38(5): 050106. doi: 10.11858/gywlxb.20240755

    CHEN W S, TAN Y, TAN D Y, et al. First-principles theoretical study on the structure behaviors of NaPO3 under compression [J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 050106. doi: 10.11858/gywlxb.20240755
    [12] 何宇, 孙士川, 李和平. 地球内核超离子态铁合金及其效应 [J]. 高压物理学报, 2024, 38(3): 030202. doi: 10.11858/gywlxb.20240707

    HE Y, SUN S C, LI H P. Superionic iron alloys in Earth’s inner core and their effects [J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030202. doi: 10.11858/gywlxb.20240707
    [13] 吴忠庆, 王文忠. 矿物高温高压下弹性的第一性原理计算研究进展 [J]. 中国科学: 地球科学, 2016, 46(5): 582–617.

    WU Z Q, WANG W Z. First-principles calculations of elasticity of minerals at high temperature and pressure [J]. Science China Earth Sciences, 2016, 59(6): 1107–1137.
    [14] 甘波, 李俊, 蒋刚, 等. Fe高压熔化线的实验研究进展 [J]. 高压物理学报, 2021, 35(6): 060101. doi: 10.11858/gywlxb.20210859

    GAN B, LI J, JIANG G, et al. A review of the experimental determination of the melting curve of iron at ultrahigh pressures [J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 060101. doi: 10.11858/gywlxb.20210859
    [15] LUO S N, STRACHAN A, SWIFT D C. Nonequilibrium melting and crystallization of a model Lennard-Jones system [J]. The Journal of Chemical Physics, 2004, 120(24): 11640–11649. doi: 10.1063/1.1755655
    [16] BELONOSHKO A B. Molecular dynamics of MgSiO3 perovskite at high pressures: equation of state, structure, and melting transition [J]. Geochimica et Cosmochimica Acta, 1994, 58(19): 4039–4047. doi: 10.1016/0016-7037(94)90265-8
    [17] BELONOSHKO A B, SKORODUMOVA N V, ROSENGREN A, et al. Melting and critical superheating [J]. Physical Review B, 2006, 73(1): 012201. doi: 10.1103/PhysRevB.73.012201
    [18] SIMON F, GLATZEL G. Bemerkungen zur schmelzdruckkurve [J]. Zeitschrift für Anorganische und Allgemeine Chemie, 1929, 178(1): 309–316. doi: 10.1002/zaac.19291780123
    [19] KECHIN V V. Melting curve equations at high pressure [J]. Physical Review B, 2001, 65(5): 052102. doi: 10.1103/PhysRevB.65.052102
    [20] GIBBS J W. Graphical methods in the thermodynamics of fluids [J]. Transactions of the Connecticut Academy of Arts and Sciences, 1873, 2: 309–342.
    [21] GIBBS J W. A method of geometrical representation of the thermodynamic properties of substances by means of surfaces [J]. Transactions of the Connecticut Academy of Arts and Sciences, 1873, 2: 382–404.
    [22] GIBBS J W. On the equilibrium of heterogeneous substances [J]. Transactions of the Connecticut Academy of Arts and Sciences, 1876, 3: 108–248.
    [23] YIN K, LU X C, ZHOU H Q, et al. Thermodynamic stability limit of the crystalline state from the Gibbs perspective [J]. Physical Review B, 2018, 98(14): 144113. doi: 10.1103/PhysRevB.98.144113
    [24] KATSURA T, YAMADA H, NISHIKAWA O, et al. Olivine-wadsleyite transition in the system (Mg, Fe)2SiO4 [J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B2): B02209. doi: 10.1029/2003JB002438
    [25] 刘曦, 代立东, 邓力维, 等. 近十年我国在地球内部物质高压物性实验研究方面的主要进展 [J]. 高压物理学报, 2017, 31(6): 657–681. doi: 10.11858/gywlxb.2017.06.001

    LIU X, DAI L D, DENG L W, et al. Recent progresses in some fields of high-pressure physics relevant to Earth sciences achieved by Chinese scientists [J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 657–681. doi: 10.11858/gywlxb.2017.06.001
    [26] BOSTROEM D. Single-crystal X-ray diffraction studies of synthetic Ni-Mg olivine solid solutions [J]. American Mineralogist, 1987, 72(9/10): 965–972.
    [27] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
    [28] PERDEW J P, RUZSINSZKY A, CSONKA G I, et al. Restoring the density-gradient expansion for exchange in solids and surfaces [J]. Physical Review Letters, 2008, 100(13): 136406. doi: 10.1103/PhysRevLett.100.136406
    [29] NOSÉ S. A unified formulation of the constant temperature molecular dynamics methods [J]. The Journal of Chemical Physics, 1984, 81(1): 511–519. doi: 10.1063/1.447334
    [30] HOOVER W G. Canonical dynamics: equilibrium phase-space distributions [J]. Physical Review A, 1985, 31(3): 1695–1697. doi: 10.1103/PhysRevA.31.1695
    [31] OHTANI E, KUMAZAWA M. Melting of forsterite Mg2SiO4 up to 15 GPa [J]. Physics of the Earth and Planetary Interiors, 1981, 27(1): 32–38. doi: 10.1016/0031-9201(81)90084-4
    [32] DAVIS B T C, ENGLAND J L. The melting of forsterite up to 50 kilobars [J]. Journal of Geophysical Research, 1964, 69(6): 1113–1116. doi: 10.1029/JZ069i006p01113
    [33] PRESNALL D C, WALTER M J. Melting of forsterite, Mg2SiO4, from 9.7 to 16.5 GPa [J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B11): 19777–19783. doi: 10.1029/93JB01007
    [34] BOYD F R, ENGLAND J L. The quartz-coesite transition [J]. Journal of Geophysical Research, 1960, 65(2): 749–756. doi: 10.1029/JZ065i002p00749
    [35] BOWEN N L, ANDERSEN O. The binary system MgO-SiO2 [J]. American Journal of Science, 1914, s4-37(222): 487–500.
    [36] DE KOKER N P, STIXRUDE L, KARKI B B. Thermodynamics, structure, dynamics, and freezing of Mg2SiO4 liquid at high pressure [J]. Geochimica et Cosmochimica Acta, 2008, 72(5): 1427–1441. doi: 10.1016/j.gca.2007.12.019
    [37] HORIUCHI H, SAWAMOTO H. β-Mg2SiO4: single-crystal X-ray diffraction study [J]. American Mineralogist, 1981, 66(5/6): 568–575.
    [38] AKAOGI M, ITO E, NAVROTSKY A. Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: calorimetric measurements, thermochemical calculation, and geophysical application [J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B11): 15671–15685. doi: 10.1029/JB094iB11p15671
    [39] KATSURA T, ITO E. The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: precise determination of stabilities of olivine, modified spinel, and spinel [J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B11): 15663–15670. doi: 10.1029/JB094iB11p15663
    [40] MORISHIMA H, KATO T, SUTO M, et al. The phase boundary between α- and β-Mg2SiO4 determined by in situ X-ray observation [J]. Science, 1994, 265(5176): 1202–1203. doi: 10.1126/science.265.5176.1202
    [41] YU Y G, WU Z Q, WENTZCOVITCH R M. α-β-γ transformations in Mg2SiO4 in Earth’s transition zone [J]. Earth and Planetary Science Letters, 2008, 273(1/2): 115–122. doi: 10.1016/j.jpgl.2008.06.023
    [42] GASPARIK T. Phase relations in the transition zone [J]. Journal of Geophysical Research: Solid Earth, 1990, 95(B10): 15751–15769. doi: 10.1029/JB095iB10p15751
    [43] PERDEW J P, ZUNGER A. Self-interaction correction to density-functional approximations for many-electron systems [J]. Physical Review B, 1981, 23(10): 5048–5079. doi: 10.1103/PhysRevB.23.5048
    [44] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  380
  • HTML全文浏览量:  85
  • PDF下载量:  57
出版历程
  • 收稿日期:  2025-07-15
  • 修回日期:  2025-07-23
  • 网络出版日期:  2025-07-28
  • 刊出日期:  2025-10-05

目录

    /

    返回文章
    返回