Review on Stress-Strain Rate Controllable Loading of Functionally Graded Materials
-
摘要: 鉴于国防安全、高端制造等重点领域中关键材料动态物性参数对应力-应变率可控加载的依赖性,对国内外相关功能梯度复合材料实现应力-应变率可控加载的研究进展进行了简要梳理和总结,综述重点为功能梯度复合材料应力-应变率可控加载相关动态物性参数的研究进展。概述了材料动态物性参数对应力-应变率可控加载的影响以及复合材料动态物性参数的测获方法,为了解应力-应变率可控加载技术提供参考。Abstract: Given the dependence that key material dynamic properties in critical fields (e.g., national defense security and high-end manufacturing) have on stress-strain rate-controlled loading. This paper briefly reviews and summarizes domestic and international research progress on achieving stress-strain rate-controlled loading for functionally graded materials. This review focuses on advances in studying dynamic material properties related to controlled stress-strain rate loading in functionally graded composites. It outlines the influence of material dynamic properties on controlled stress-strain rate loading and methods for obtaining composite dynamic properties, providing a reference for understanding controlled stress-strain rate loading technology.
-
图 2 (a) 二级轻气炮加载装置、(b) 功能梯度复合材料结构和(c) 双层功能梯度复合材料击靶波系示意图,(d) 功能梯度复合材料与均质材料加载效果对比
Figure 2. Schematic diagrams of (a) two-stage light gas gun, (b) functionally graded material structure, (c) wave propagation in double-layer FGMs impact targets; (d) comparison of loading effects between FGMs and homogeneous materials
图 3 (a) 冲击Hugoniot线[40–43],(b) 冲击Hugoniot参数对功能梯度复合材料加载应力-应变率的影响,(c) 502 m/s、不同本构模型下双层梯度材料模拟计算的粒子速度曲线及对应的压力云图[38]
Figure 3. (a) Shock Hugoniot line[40–43]; (b) effect of shock Hugoniot parameters on stress-strain rate behavior in FGMs (c) particle velocity curves and corresponding pressure contour plots for two-layered graded materials at 502 m/s, simulated under different constitutive models[38]
图 4 3种插值模型预估(a) W-Cu复合材料、(b) 石蜡-方镁石复合材料物态方程的对比[63–66],(c) 介观尺度下的混合法则原理示意图,(d) 混合法则预测本构模型计算的真应力-应变结果[67]
Figure 4. Comparison of three interpolation models for predicting the equation of state of (a) W-Cu composites and (b) paraffin-magnesite composites[63–66]; (c) schematic diagram of the mixing rule at the mesoscale; (d) true stress-strain results calculated using the mixing rule constitutive model[67]
图 5 (a) Al-Cu二元合金相图[76],(b) Al2Cu IMCs选区电子衍射图,(c) Al-Cu界面的透射电子显微图,(d) Al4Cu9 IMCs选区电子衍射图[77],(e) 排胶后Al、C元素分布,(f) C在Al颗粒表面分布的透射电子显微图[47],(g) 烧结过程中Al-Al2Cu界面的应变梯度场,(h) 位错与微米级Al2Cu及纳米级Al2Cu的相互作用机制[78]
Figure 5. (a) Phase diagram of Al-Cu binary alloy[76]; (b) selective area electron diffraction (SAED) image of Al2Cu IMCs; (c) transmission electron micrograph (TEM) image of Al-Cu interface; (d) SAED image of Al4Cu9 IMCs; (e) distribution of Al and C elements after de-sizing[77]; (f) transmission electron micrograph (TEM) image showing C distribution on Al particle surfaces[47]; (g) strain graded field at the Al-Al2Cu interface during sintering; (h) interaction mechanism between dislocations and micrometer-scale Al2Cu and nanoscale Al2Cu[78]
图 6 (a)不同Al4Cu9 IMCs含量的Al-Cu复合材料的X射线衍射图, Al-Cu复合材料微结构分布的(b)扫描电子显微图、(c) 能量色散谱图[79], (d) Al/PTFE复合材料微观结构的扫描电子显微图、(e) 介观结构的CT扫描图及有限元建模[80]
Figure 6. (a) X-ray diffraction (XRD) image of Al-Cu composites with varying Al4Cu9 IMCs contents; microstructural distribution in Al-Cu composites of (b) SEM image and (c) EDS image[79]; (d) SEM image of Al/PTFE composite microstructure; (e) CT scan of mesostructure and finite element modeling[80]
图 7 (a) 不同Al4Cu9 IMCs含量Al-Cu复合材料的冲击Hugoniot线[79];分子动力学计算Al的(b)冲击Hugoniot线[87–90]和(c) 冲击压力-比容关系[84, 91–93];(d)
2200 m/s加载速度下Al/PTFE复合材料的变形行为、压力、温度云图;(e) 不同信号通道下Al/PTFE复合材料的粒子速度随时间的变化;(f) Al/PTFE复合材料的冲击Hugoniot线[80, 94]Figure 7. (a) Shock Hugoniot curves of Al-Cu composites with varying Al4Cu9 IMCs content[79]; molecular dynamics calculations of Al’s (b) shock Hugoniot line[87–90] and (c) impact pressure-specific volume relationship[84, 91–93]; (d) deformation behavior, pressure, and temperature distributions of Al/PTFE composites under the loading rate of
2200 m/s; (e) particle velocity evolution over time in Al/PTFE composites under different signal channels; (f) shock Hugoniot of Al/PTFE composites[80, 94]图 8 (a) 高压下Al4Cu9 IMCs的杨氏模量分布;(b) Al4Cu9 IMCs的总态密度及分态密度图;(c) Al4Cu9 IMCs总态密度随压力的变化[79];(d) 纤维增强复合材料的显微图像和冲击Hugoniot线[95–97];(e) 金刚石-TiC复合材料的冲击Hugoniot线及其与金刚石材料的对比[98–103]
Figure 8. (a) Distribution of Young’s modulus for Al4Cu9 IMCs under high pressure; (b) total and partial density of states (DOS) diagrams for Al4Cu9 IMCs; (c) pressure-dependent distribution of total density of states for Al4Cu9 IMCs[79]; (d) micrograph and shock Hugoniot line of fiber-reinforced composite material[95–97]; (e) shock Hugoniot of diamond-TiC composites and the comparison with diamond[98–103]
-
[1] GU Y L, ZHANG H L, XU Z, et al. Design and application of electrocatalyst based on machine learning [J]. Interdisciplinary Materials, 2025, 4(1): 456–479. doi: 10.1002/idm2.12249 [2] JIANG X, XUE D Z, BAI Y, et al. Al4 Materials: transforming the landscape of materials science and engineering [J]. Review of Materials Research, 2025, 1: 100010. doi: 10.1016/j.revmat.2025.100010 [3] LIU Q Y, WU D Z. Machine learning and feature representation approaches to predict stress-strain curves of additively manufactured metamaterials with varying structure and process parameters [J]. Materials & Design, 2024, 241: 112932. doi: 10.1016/j.matdes.2024.112932 [4] PEI Z R, YIN J Q, ZHANG J X. Language models for materials discovery and sustainability: progress, challenges, and opportunities [J]. Progress in Materials Science, 2025, 154: 101495. doi: 10.1016/j.pmatsci.2025.101495 [5] WANG G J, HU J J, ZHOU J, et al. Knowledge-guided large language model for material science [J]. Review of Materials Research, 2025, 1: 100007. doi: 10.1016/j.revmat.2025.100007 [6] WANG G J, WANG E P, LI Z F, et al. Exploring the mathematic equations behind the materials science data using interpretable symbolic regression [J]. Interdisciplinary Materials, 2024, 3: 637–657. doi: 10.1002/idm2.12180 [7] BURGER B, MAFFETTONE P M, GUSEV V V, et al. A mobile robotic chemist [J]. Nature, 2020, 583: 347–241. doi: 10.1038/s41586-020-2442-2 [8] SONG X S, WANG W W, DENG Y J, et al. Data-driven modeling for residual velocity of projectile penetrating reinforced concrete slabs [J]. Engineering Structures, 2024, 306: 117761. doi: 10.1016/j.engstruct.2024.117761 [9] TIAN S H, JIANG X, WANG W R, et al. Steel design based on a large language model [J]. Acta Materialia, 2025, 285: 120663. doi: 10.1016/j.actamat.2024.120663 [10] WANG C C, WEI X L, ZWAAG V D S, et al. From creep-life prediction to ultra-creep-resistant steel design: an uncertainty-informed machine learning approach [J]. Acta Materialia, 2025, 292: 121073. doi: 10.1016/j.actamat.2025.121073 [11] WANG W R, JIANG X, LI W Y, et al. Design of superalloys with multiple properties via multi-task learning [J]. Acta Materialia, 2025, 294: 121161. doi: 10.1016/j.actamat.2025.121161 [12] WANG W R, JIANG X, TIAN S H, et al. Alloy synthesis and processing by semi-supervised text mining [J]. NPJ Computational Materials, 2023, 9: 183. doi: 10.1038/s41524-023-01138-w [13] YANG C, KIM Y S, RYU S H, et al. Prediction of composite microstructure stress-strain curves using convolutional neural networks [J]. Materials & Design, 2020, 189: 108509. doi: 10.1016/j.matdes.2020.108509 [14] YU S L, CHAI H Y, XIONG Y Q, et al. Studying complex evolution of hyperelastic materials under external field stimuli using artificial neural networks with spatiotemporal features in a small-scale dataset [J]. Advanced Materials, 2022, 34: 2202908. doi: 10.1002/adma.202200908 [15] YU S L, RAN N, LIU J J. Large-language models: the game-changers for materials science research [J]. Artificial Intelligence Chemistry, 2024, 2: 100076. doi: 10.1016/j.aichem.2024.100076 [16] FAN C H, LUO H, ZHAO Q C, et al. Deep learning accelerated the discovery of multi-principal element alloys with various strength-toughness trade-offs [J]. MGE Advances, 2025, 3: e70020. doi: 10.1002/mgea.70020 [17] DING Z, LI Y T, JIANG H, et al. The integral role of high-entropy alloys in advancing solid-state hydrogen storage [J]. Interdisciplinary Materials, 2025, 4(1): 75–108. doi: 10.1002/idm2.12216 [18] TIAN Y S, SU Z P, CHEN L L, et al. Optimizing beveled diamond anvils via finite element analysis [J]. International Journal of Mechanical Sciences, 2025, 302: 110602. doi: 10.1016/j.ijmecsci.2025.110602 [19] WEI J, LUO G Q, WEI Q Q, et al. Quantitative analysis of strain rate and failure modes in sandwich structures under high-velocity impact for ballistic performance optimization [J]. International Journal of Impact Engineering, 2025, 206: 105449. doi: 10.1016/j.ijimpeng.2025.105449 [20] LEMKE R W, KNUDSON M D, DAVIS J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator [J]. International Journal of Impact Engineering, 2011, 38(6): 480–485. doi: 10.1016/j.ijimpeng.2010.10.019 [21] FRATANDUONO D E, MILLOT M, BRAUN D G, et al. Establishing gold and platinum standards to 1 terapascal using shockless compression [J]. Science, 2021, 372(6546): 1063–1068. doi: 10.1126/science.abh0364 [22] SMITH R F, EGGERT J H, JEANLOZ R, et al. Ramp compression of diamond to five terapascals [J]. Nature, 2014, 511(7509): 330–333. doi: 10.1038/nature13526 [23] 新野 正之, 平井 敏雄, 渡边 龙三. 傾斜機能材料——宇宙機用超耐熱材料を目指して [J]. 日本複合材料学会誌, 1987, 13(6): 257–264. [24] LI Y, FENG Z Y, HAO L, et al. A review on functionally graded materials and structures via additive manufacturing: from multi-scale design to versatile functional properties [J]. Advanced Materials Technologies, 2020, 5(6): 1900981. doi: 10.1002/admt.201900981 [25] RAY A, SINGLA A. Hydrodynamic simulation of hypervelocity generation by use of functionally graded materials: velocity enhancement study [J]. International Journal of Impact Engineering, 2021, 152: 103843. doi: 10.1016/j.ijimpeng.2021.103843 [26] 王宇, 柏劲松, 王翔, 等. 汇聚型超高速发射装置一级飞片的计算设计 [J]. 高压物理学报, 2015, 29(2): 155–160. doi: 10.11858/gywlxb.2015.02.011WANG Y, BAI J S, WANG X, et al. Computational design of graded density impactors for convergent hypervelocity launchers [J]. Chinese Journal of High Pressure Physics, 2015, 29(2): 155–160. doi: 10.11858/gywlxb.2015.02.011 [27] 王宇, 柏劲松, 王翔, 等. 汇聚型超高速发射装置的发射腔计算设计 [J]. 高压物理学报, 2016, 30(3): 235–241. doi: 10.11858/gywlxb.2016.03.009WANG Y, BAI J S, WANG X, et al. Computational design of the cavity in the enhanced hypervelocity launcher [J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 235–241. doi: 10.11858/gywlxb.2016.03.009 [28] HUANG Y H, ZHANG R Z, LIU S X, et al. Graded density impactor design via machine learning and numerical simulation: achieve controllable stress and strain rate [J]. Defence Technology, 2025, 51: 262–273. doi: 10.1016/j.dt.2025.05.003 [29] JIA H, ZHANG J, GE S, et al. Achieving high-strength porous tungsten with wide porosity range via selective dissolution W-Ti-Fe precursor [J]. International Journal of Refractory Metals and Hard Materials, 2024, 121: 106685. doi: 10.1016/j.ijrmhm.2024.106685 [30] LI P B, HU J N, FANG T, et al. Microstructure regulation and strengthening mechanism of Al/Ag composites prepared by Plasma Activated Sintered [J]. Materials Science and Engineering: A, 2022, 852: 143631. doi: 10.1016/j.msea.2022.143631 [31] LUO G Q, LI P B, HU J N, et al. Synergistic effect of Ag and C addition into Al-Cu matrix composites [J]. Journal of Materials Science, 2022, 57(24): 11013–11025. doi: 10.1007/s10853-022-07189-6 [32] ZHANG R Z, CHEN J, ZHU Y X, et al. Correlation between the structure and compressive property of PMMA microcellular foams fabricated by supercritical CO2 foaming method [J]. Polymers, 2020, 12(2): 315. doi: 10.3390/polym12020315 [33] ZHOU D F, XIONG Y L, YUAN H, et al. Synthesis and compressive behaviors of PMMA microporous foam with multi-layer cell structure [J]. Composites Part B: Engineering, 2019, 165: 272–278. doi: 10.1016/j.compositesb.2018.11.118 [34] LIU Z Q, WU Z Q, LI L, et al. A multi-dimensional graded structure design based on structural impact response behavior for stress-strain rate control [J]. Composite Structures, 2025, 370: 119408. doi: 10.1016/j.compstruct.2025.119408 [35] WU A J, WU Z Q, LIU Z Q, et al. Regulating loading strain rates under shockless quasi-isentropic compression using a resin-based areal density gradient flyer [J]. Journal of Materials Research and Technology, 2024, 30: 919–929. doi: 10.1016/j.jmrt.2024.03.106 [36] GUO H C, RAO M, ZHANG J, et al. Electromigration-enhanced Kirkendall effect of Cu/Ti direct diffusion welding by sparking plasma sintering [J]. Journal of Materials Processing Technology, 2023, 315: 117933. doi: 10.1016/j.jmatprotec.2023.117933 [37] 江宇达, 张睿智, 吴楯, 等. Ti-Pt周期调制梯度材料的制备及准等熵加载特性 [J]. 高压物理学报, 2024, 38(6): 064205 doi: 10.11858/gywlxb.20240816JIANG Y D, ZHANG R Z, WU D, et al. Preparation and quasi-isentropic loading characteristics of Ti-Pt periodically modulated gradient material [J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064205 doi: 10.11858/gywlxb.20240816 [38] 彭建祥. Johnson-Cook本构模型和Steinberg本构模型的比较研究 [D]. 绵阳: 中国工程物理研究院, 2006: 1−4.PENG J X. Comparative study of Johnson-Cook constitutive model and Steinberg constitutive model [D]. Mianyang: China Academy of Engineering Physics, 2006: 1−4. [39] ZHAO Y, ZHANG R Z, CHENG P, et al. Development of multi-layered graded density Cu/PMMA for controlled stress and strain rate behavior [J]. Journal of Applied Physics, 2025, 137(20): 205902. doi: 10.1063/5.0252790 [40] WANG X, DAI C D, WANG Q S, et al. Development of a three-stage gas gun launcher for ultrahigh-pressure Hugoniot measurements [J]. Review of Scientific Instruments, 2019, 90(1): 013903. doi: 10.1063/1.5035502 [41] BAI J S, WANG X, PEI X Y, et al. An improved impactor design for eliminating spallation in high-impedance flyers during hypervelocity launch [J]. Experimental Mechanics, 2016, 56: 1661–1664. doi: 10.1007/s11340-016-0155-0 [42] CHEN P A, LUO G Q, LI M J, et al. Effects of Zn additions on the solid-state sintering of W-Cu composites [J]. Materials & Design, 2012, 36: 108–112. doi: 10.1016/j.matdes.2011.10.006 [43] 柏劲松, 王翔, 华劲松, 等. 气炮发射获得超高速碰撞器的数值模拟研究进展 [J]. 中国科学: 物理学 力学 天文学, 2014, 44: 547–556. doi: 10.1360/132012-782BAI J S, WANG X, HUA J S, et al. The gas gun launch advances in numerical simulation of hypervelocity impact. [J]. Science China Physics, Mechanics and Astronomy, 2014, 44: 547–556. doi: 10.1360/132012-782 [44] HUANG J, ZHANG J, ZHU K, et al. Using graded density impactor to achieve quasi-isentropic loading with stress and strain-rate controlled [J]. Journal of Applied Physics, 2024, 135(8): 085901. doi: 10.1063/5.0189243 [45] BROWN J L, ADAMS D P, ALEXANDER C S, et al. Estimates of Ta strength at ultrahigh pressures and strain rates using thin-film graded-density impactors [J]. Physical Review B, 2019, 99(21): 214105. doi: 10.1103/PhysRevB.99.214105 [46] LI P B, LUO G Q, ZHANG X S, et al. The synergistic effects of heterogeneous structures enhance the strength-ductility of Al-Cu composites [J]. Journal of Materials Research and Technology, 2024, 33: 7284–7292. doi: 10.1016/j.jmrt.2024.11.128 [47] HU J N, TAN Y, LI X M, et al. Structure characterization and impact effect of Al-Cu graded materials prepared by tape casting [J]. Materials, 2022, 15(14): 4834. doi: 10.3390/ma15144834 [48] CHEN F, ZHAO X F, HUANG Z F, et al. Bending and vibration analysis of trigonometric varying functionally graded material via a novel third-order shear deformation theory [J]. Acta Mechanica Solida Sinica, 2024, 37(6): 919–931. doi: 10.1007/s10338-024-00507-2 [49] BOBBILI R, RAMAKRISHNA B, MADHU V. Dynamic compressive behavior and fracture modeling of titanium alloy IMI 834 [J]. Journal of Alloys and Compounds, 2017, 714: 225–231. doi: 10.1016/j.jallcom.2017.04.228 [50] CASEM D T, DANDEKAR D P. Shock and mechanical response of 2139-T8 aluminum [J]. Journal of Applied Physics, 2012, 111(6): 063508. doi: 10.1063/1.3694661 [51] YAICH M, AYED Y, BOUAZIZ Z, et al. Numerical analysis of constitutive coefficients effects on FE simulation of the 2D orthogonal cutting process: application to the Ti6Al4V [J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(1/2/3/4): 283–303. doi: 10.1007/s00170-016-8934-4 [52] DONEY R L, NIEDERHAUS J H J, FULLER T J, et al. Effects of equations of state and constitutive models on simulating copper shaped charge jets in ALEGRA [J]. International Journal of Impact Engineering, 2020, 136: 103428. doi: 10.1016/j.ijimpeng.2019.103428 [53] ZHANG Y W, GUO C C, HUANG Y H, et al. Accurate finite element simulations of dynamic behaviour: constitutive models and analysis with deep learning [J]. Materials, 2024, 17(3): 643. doi: 10.3390/ma17030643 [54] SIGNETTI S, HEINE A. Transition regime between high-velocity and hypervelocity impact in metals—a review of the relevant phenomena for material modeling in ballistic impact studies [J]. International Journal of Impact Engineering, 2022, 167: 104213. doi: 10.1016/j.ijimpeng.2022.104213 [55] SIGNETTI S, HEINE A. Characterization of the transition regime between high-velocity and hypervelocity impact: thermal effects and energy partitioning in metals [J]. International Journal of Impact Engineering, 2021, 151: 103774. doi: 10.1016/j.ijimpeng.2020.103774 [56] PRIME M B, ARSENLIS A, AUSTIN R A, et al. A broad study of tantalum strength from ambient to extreme conditions [J]. Acta Materialia, 2022, 231: 117875. doi: 10.1016/j.actamat.2022.117875 [57] KOSITSKI R, MORDEHAI D. A dislocation-based dynamic strength model for tantalum across a large range of strain rates [J]. Journal of Applied Physics, 2021, 129(16): 165108. doi: 10.1063/5.0045131 [58] BARTON N R, BERNIER J V, BECKER R, et al. A multiscale strength model for extreme loading conditions [J]. Journal of Applied Physics, 2011, 109(7): 073501. doi: 10.1063/1.3553718 [59] KRITCHER A L, SWIFT D C, DÖPPNER T, et al. A measurement of the equation of state of carbon envelopes of white dwarfs [J]. Nature, 2020, 584(7819): 51–54. doi: 10.1038/s41586-020-2535-y [60] KIM D, SMITH R F, OCAMPO I K, et al. Structure and density of silicon carbide to 1.5 TPa and implications for extrasolar planets [J]. Nature Communications, 2022, 13(1): 2260. doi: 10.1038/s41467-022-29762-y [61] 陈子博, 谢普初, 刘东升, 等. 基于广义波阻抗梯度飞片的准等熵压缩技术 [J]. 爆炸与冲击, 2019, 39(4): 041406. doi: 10.11883/bzycj-2018-0407CHEN Z B, XIE P C, LIU D S, et al. Quasi-isentropic compression technique based on generalized wave impedance gradient flyer [J]. Explosion and Shock Waves, 2019, 39(4): 041406. doi: 10.11883/bzycj-2018-0407 [62] SUN W F, ZHU T T, CHEN P W, et al. Dynamic implosion of submerged cylindrical shell under the combined hydrostatic and shock loading [J]. Thin-Walled Structures, 2022, 170: 108574. doi: 10.1016/j.tws.2021.108574 [63] YOUNG G, LIU X, LENG C W, et al. Average models for calculating the shock equation of state of alloy and mixture [J]. Japanese Journal of Applied Physics, 2019, 58(6): 066004. doi: 10.7567/1347-4065/ab1c1e [64] MILLETT J C F, BOURNE N K, BARNES N R. The behavior of an epoxy resin under one-dimensional shock loading [J]. Journal of Applied Physics, 2002, 92(11): 6590–6594. doi: 10.1063/1.1506389 [65] MITCHELL A C, NELLIS W J. Shock compression of aluminum, copper, and tantalum [J]. Journal of Applied Physics, 1981, 52(5): 3363–3374. doi: 10.1063/1.329160 [66] MUNSON D E, MAY R P. Dynamically determined high pressure compressibilities of three epoxy resin systems, 1972, 43(3): 962−971. [67] 耿芳芳. 铜/镍复层箔微拉伸塑性变形行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2017: 34−38.GENG F F. Plastic deformation behaviors of Cu/Ni clad foil in uniaxial micro-tension [D]. Harbin: Harbin Institute of Technology, 2017: 34−38. [68] MEYERS M A. Dynamic behavior of materials [M]. John Wiley & Sons, Inc. , 1994. [69] PETEL O E, JETTÉ F X. Comparison of methods for calculating the shock hugoniot of mixtures [J]. Shock Waves, 2010, 20(1): 73–83. doi: 10.1007/s00193-009-0230-x [70] LÄSSIG T R, MAY M, HEISSERER U, et al. Effect of consolidation pressure on the impact behavior of UHMWPE composites [J]. Composites Part B: Engineering, 2018, 147: 47–55. doi: 10.1016/j.compositesb.2018.04.030 [71] MCQUEEN R G, MARSH S P, FRITZ J N. Hugoniot equation of state of twelve rocks [J]. Journal of Geophysical Research, 1967, 72(20): 4999–5036. doi: 10.1029/JZ072i020p04999 [72] LI J B, LI W B, WANG X M, et al. Shock response and prediction model of equation of state for aluminum powder/rubber matrix composites [J]. Materials & Design, 2020, 191: 108632. doi: 10.1016/j.matdes.2020.108632 [73] KITTELL D E, ABERE M J, SPECHT P E, et al. Continuum shock mixture models for Ni+Al multilayers: individual layers and bulk equations of state [J]. Journal of Applied Physics, 2025, 137(7): 075102. doi: 10.1063/5.0237889 [74] YOUNG G, FAN L L, ZHAO B, et al. Equation of state for Fe-9.0 wt% O up to 246 GPa: implications for oxygen in the Earth’s outer core [J]. Journal of Geophysical Research: Solid Earth, 2021, 126(2): e2020JB021056. doi: 10.1029/2020JB021056 [75] 谭华. 实验冲击波物理 [M]. 北京: 国防工业出版社, 2018: 5−6.TAN H. Experimental shock wave physics [M]. Beijing: National Defense Industry Press, 2018: 5−6. [76] MUHAMMAD N A, WU C S, TIAN W H. Effect of ultrasonic vibration on the intermetallic compound layer formation in Al/Cu friction stir weld joints [J]. Journal of Alloys and Compounds, 2019, 785: 512–522. doi: 10.1016/j.jallcom.2019.01.170 [77] XU H, LIU C, SILBERSCHMIDT V V, et al. Behavior of aluminum oxide, intermetallics and voids in Cu-Al wire bonds [J]. Acta Materialia, 2011, 59: 5661–5673. doi: 10.1016/j.actamat.2011.05.041 [78] LI P B, LUO G Q, ZHAO G N, et al. Scaling effect of intermetallic compounds in Al-Cu composites [J]. Materials Today Communications, 2025, 47: 113187. doi: 10.1016/j.mtcomm.2025.113187 [79] GUO C C, ZHANG R Z, LI L, et al. Multiscale analysis of Al4Cu9 intermetallic compounds on shock Hugoniot of Al-Cu composites: experiments and simulations [J]. Composite Structures, 2025, 355: 118866. doi: 10.1016/j.compstruct.2025.118866 [80] YANG X L, HE Y, HE Y, et al. Investigation of the shock compression behaviors of Al/PTFE composites with experimental and a 3D mesoscale-model [J]. Defence Technology, 2022, 18(1): 62–71. doi: 10.1016/j.dt.2020.11.020 [81] ZHU W, LI W H, LI W B, et al. Shock response characteristics and equation of state of high-mass-fraction pressed tungsten powder/polytetrafluoroethylene-based composites [J]. Polymers, 2025, 17(17): 2309. doi: 10.3390/polym17172309 [82] RAZORENOV S, GARKUSHIN G, SAVINYKH A, et al. Strength characteristics of a heat-resistant metal-matrix composite Inconel 625-5%NiTi-TiB2 alloy fabricated by direct laser deposition under shock-wave loading [J]. Metals, 2023, 13(3): 477. doi: 10.3390/met13030477 [83] WANG C, CHEN J, LIANG S H, et al. First-principles calculations to investigate pressure effect on structural, elastic and thermodynamic properties of AlCu, Al2Cu and Al4Cu9 [J]. Vacuum, 2022, 203: 111279. doi: 10.1016/j.vacuum.2022.111279 [84] YANG X, ZENG X G, CHEN H Y, et al. Molecular dynamics investigation on complete Mie-Grüneisen equation of state: Al and Pb as prototypes [J]. Journal of Alloys and Compounds, 2019, 808: 151702. doi: 10.1016/j.jallcom.2019.151702 [85] YANG X, ZENG X G, PU C J, et al. Molecular dynamics modeling of the Hugoniot states of aluminum [J]. AIP Advances, 2018, 8(10): 105212. doi: 10.1063/1.5050426 [86] PU C J, YANG X, XIAO D J, et al. Molecular dynamics simulations of shock melting in single crystal Al and Cu along the principle Hugoniot [J]. Materials Today Communications, 2021, 26: 101990. doi: 10.1016/j.mtcomm.2020.101990 [87] Marsh S P. LASL shock Hugoniot data [M]. California, USA: University of California Press, 1980. [88] CHIJIOKE A D, NELLIS W J, SILVERA I F. High-pressure equations of state of Al, Cu, Ta, and W [J]. Journal of Applied Physics, 2005, 98: 073526. doi: 10.1063/1.2071449 [89] CHOUDHURI D, GUPTA Y M. Shock compression of aluminum single crystals to 70 GPa: role of crystalline anisotropy [J]. Journal of Applied Physics, 2013, 114: 153504. doi: 10.1063/1.4824825 [90] JU Y Y, ZHANG Q M, GONG Z Z, et al. Molecular dynamics simulation of shock melting of aluminum single crystal [J]. Journal of Applied Physics, 2013, 114: 093507. doi: 10.1063/1.4819298 [91] WANG Y, LI L. Mean-field potential approach to thermodynamic properties of metal: Al as a prototype [J]. Physical Review B, 2000, 62(1): 196. doi: 10.1103/PhysRevB.62.196 [92] MITCHELL A C, NELLIS W J, MORIARTY J A, et al. Equation of state of Al, Cu, Mo, and Pb at shock pressures up to 2.4 TPa (24 Mbar) [J]. Journal of Applied Physics, 1991, 69(5): 2981–2986. doi: 10.1063/1.348611 [93] NELLIS W J, MORIARTY J A, MITCHELL A C, et al. Metals physics at ultrahigh pressure: aluminum, copper, and lead as prototypes [J]. Physical Review Letters, 1988, 60(14): 1414. doi: 10.1103/PhysRevLett.60.1414 [94] GUO J, ZHANG Q M, ZHANG L S, et al. Reaction behavior of polytetrafluoroethylene/Al granular composites subjected to planar shock wave [J]. Propellants Explos. Pyrotech, 2017, 42: 300–307. doi: 10.1002/prep.201600115 [95] MOCHALOVA V, UTKIN A, NIKOLAEV D. Shock response of unidirectional carbon polymer composite up to pressures of 200 GPa [J]. Journal of Applied Physics, 2023, 133(24): 245902. doi: 10.1063/5.0155414 [96] ALEXANDER C S, KEY C T, SCHUMACHER S C. Dynamic response and modeling of a carbon fiber-epoxy composite subject to shock loading [J]. Journal of Applied Physics, 2013, 114: 223515. doi: 10.1063/1.4846116 [97] ADTTELBAUM D M, COE J D, RIGG P A, et al. Shockwave response of two carbon fiber-polymer composites to 50 GPa [J]. Journal of Applied Physics, 2014, 116: 194308. doi: 10.1063/1.4898313 [98] ZHOU L, HE H L, ZHANG H, et al. Diamond-TiC composite with an ultrahigh Hugoniot elastic limit [J]. Journal of Applied Physics, 2023, 133(16): 165901. doi: 10.1063/5.0147988 [99] SEKINE T, KOBAYASHI T. NIRIM two-stage light-gas gun and equation of state of carbides [J]. Journal of Materials Processing Technology, 1999, 85: 11–14. doi: 10.1016/S0924-0136(98)00245-3 [100] KATAGIRI K, OZAKI N, UMEDA Y H, et al. Shock response of full density nanopolycrystalline diamond [J]. Physical Review Letters, 2020, 125: 185701. doi: 10.1103/PhysRevLett.125.185701 [101] LI Y Y, ZHANG L, YU Y, et al. Shock response of micro-grained diamond-SiC composite [J]. Journal of Applied Physics, 2021, 130: 025902. doi: 10.1063/5.0048427 [102] MCWILLIAMS R S, EGGERT J H, HICKS D G, et al. Strength effects in diamond under shock compression from 0.1 to 1 TPa [J]. Physical Review B, 2010, 81: 014111. doi: 10.1103/PhysRevB.81.014111 [103] WINEY J M, KNUDSON M D, GUPTA Y M. Shock compression response of diamond single crystals at multimegabar stresses [J]. Physical Review B, 2010, 101: 184105. doi: 10.1103/PhysRevB.101.184105 -

下载: