面向动态载荷仿真高保真材料模型参数的优化与不确定度评估

向士凯 咸蕴庭 武润 孙毅 甘元超 耿华运 罗国强 张建 张睿智

向士凯, 咸蕴庭, 武润, 孙毅, 甘元超, 耿华运, 罗国强, 张建, 张睿智. 面向动态载荷仿真高保真材料模型参数的优化与不确定度评估[J]. 高压物理学报, 2025, 39(11): 110104. doi: 10.11858/gywlxb.20251195
引用本文: 向士凯, 咸蕴庭, 武润, 孙毅, 甘元超, 耿华运, 罗国强, 张建, 张睿智. 面向动态载荷仿真高保真材料模型参数的优化与不确定度评估[J]. 高压物理学报, 2025, 39(11): 110104. doi: 10.11858/gywlxb.20251195
XIANG Shikai, XIAN Yunting, WU Run, SUN Yi, GAN Yuanchao, GENG Huayun, LUO Guoqiang, ZHANG Jian, ZHANG Ruizhi. Optimization and Uncertainty Quantification of High-Fidelity Material Model Parameters for Dynamic Loading Simulation[J]. Chinese Journal of High Pressure Physics, 2025, 39(11): 110104. doi: 10.11858/gywlxb.20251195
Citation: XIANG Shikai, XIAN Yunting, WU Run, SUN Yi, GAN Yuanchao, GENG Huayun, LUO Guoqiang, ZHANG Jian, ZHANG Ruizhi. Optimization and Uncertainty Quantification of High-Fidelity Material Model Parameters for Dynamic Loading Simulation[J]. Chinese Journal of High Pressure Physics, 2025, 39(11): 110104. doi: 10.11858/gywlxb.20251195

面向动态载荷仿真高保真材料模型参数的优化与不确定度评估

doi: 10.11858/gywlxb.20251195
基金项目: 国家重点研发计划(2021YFB3802300);国家自然科学基金(12372370)
详细信息
    作者简介:

    向士凯(1974-),男,博士,副研究员,主要从事材料物性理论建模与计算模拟研究. E-mail:skxiang@caep.cn

  • 中图分类号: O521.2

Optimization and Uncertainty Quantification of High-Fidelity Material Model Parameters for Dynamic Loading Simulation

  • 摘要: 高保真材料模型的系统性构建、优化和验证对于动态载荷仿真至关重要。详述了在大禹数字平台上构建和验证此类模型的方法:首先,构建参数化状态方程(equation of state, EOS)框架,整合所有可用的含相关不确定度的实验数据,并采用全局优化方法确定最优EOS参数;然后,将优化后的EOS与包含待定参数的本构模型耦合,开展复现实验条件的一维或二维数值模拟;进而,利用优化算法迭代调整本构模型参数,以实现模拟波形与实验波形的全局最优匹配,从而精确标定本构参数;最后,整合优化后的EOS与标定后的本构模型,形成完整的材料模型,并为自研及商业仿真软件开发标准化接口。通过模拟预测新的实验条件下的材料性质并与实验结果进行对比,完成材料模型的验证。利用自主研发的新型重要性交叉优化算法,实现了实验数据约束下的理论模型参数优化,采用贝叶斯不确定性量化程序对材料模型参数的不确定性及其向计算物理量的传递进行严格量化。

     

  • 图  优化后的Hugoniot状态方程与实验的对比

    Figure  1.  Comparison of the optimized Hugoniot equation of state with experiments

    图  基于优化模型计算的粒子速度剖面与实验[7]的对比

    Figure  2.  Comparison of particle velocity profile calculated by optimization model with experiments[7]

    图  Al状态方程参数的不确定度分布(相对值)

    Figure  3.  Uncertainty distribution of equation of state parameters for Al (relative value)

  • [1] 刘朋, 王黎钦, 张传伟, 等. 航空发动机主轴轴承状态监测研究现状与发展趋势 [J]. 航空动力学报, 2022, 37(2): 330–343.

    LIU P, WANG L Q, ZHANG C W, et al. Research status and development trend of condition monitoring on main-shaft bearings used in aircraft engines [J]. Journal of Aerospace Power, 2022, 37(2): 330–343.
    [2] 向士凯, 耿华运, 孙毅, 等. Yudb V1.0: 2025SR1194507 [P]. 2025.
    [3] XIAN Y T, XIANG S K, LIU L, et. al. Accurate equation of state of rhenium as pressure cale up to 130 GPa and 3 200 K [J]. AIP Advances, 2022, 12(5): 055313. doi: 10.1063/5.0089292
    [4] IKUTA D, OHTANI E, FUKUI H, et al. Large density deficit of Earthʼs core revealed by a multi-megabar primary pressure scale [J]. arXiv, 2021: 210402076.
    [5] STEINBERG D J, LUND C M. A constitutive model for strain rates from 10−4 to 106 s−1 [J]. Journal of Applied Physics, 1989, 65(4): 1528–1533. doi: 10.1063/1.342968
    [6] MARSH S P. LASL shock Hugoniot data [M]. Berkeley, USA: University of California Press, 1980.
    [7] GAN Y C, NAN X L, WU D. Dynamic yield behaviors of aluminum under shock and ramp compression: experiments and models [J]. Journal of Applied Physics, 2025, 137: 215902. doi: 10.1063/5.0270423
    [8] YAO S L, PEI X Y, YU J D, et al. A dislocation-based explanation of quasi-elastic release in shock-loaded aluminum [J]. Journal of Applied Physics, 2017, 121: 035101. doi: 10.1063/1.4974055
    [9] JOHNSON J N, HIXSON R S, GRAY G T, et al. Quasielastic release in shock-compressed solids [J]. Journal of Applied Physics, 1992, 72(2): 429–441. doi: 10.1063/1.351871
  • 加载中
图(3)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  50
  • PDF下载量:  27
出版历程
  • 收稿日期:  2025-09-10
  • 修回日期:  2025-10-13
  • 录用日期:  2025-10-17
  • 网络出版日期:  2025-10-15
  • 刊出日期:  2025-11-05

目录

    /

    返回文章
    返回