Investigation of Mechanical Behavior in Nanocrystalline Palladium under High Pressure
-
摘要: 极端高压环境下纳米金属材料的力学响应特性研究具有重要的科学意义和工程价值。采用金刚石压砧结合同步辐射X射线衍射技术,研究了平均晶粒尺寸约为10 nm的金属钯(Pd)在静高压下的力学行为。在0~111 GPa压力范围内,钯金属的相结构稳定。通过分析不同压力下X射线衍射谱的峰位和半高宽等,得到了纳米金属钯在高压下的晶胞体积、晶粒尺寸和微应变等信息。通过拟合三阶Birch-Murnaghan方程,得到了纳米钯金属在静水压和非静水压下的体弹模量分别为288和290 GPa,屈服强度约为20 GPa。结合已有报道,探讨了尺寸效应对金属材料体弹模量等力学行为的影响规律。随着晶粒尺寸的减小,钯金属的屈服强度逐渐增大,较钯纳米纤维材料提高了约300%。实验结果可为纳米金属钯在极端条件下的结构设计与应用提供数据参考。Abstract: The investigation of mechanical response characteristics of nanocrystalline metallic materials under extreme high-pressure conditions possesses significant scientific importance and engineering value. Using a diamond anvil cell combined with synchrotron radiation X-ray diffraction techniques, the mechanical behavior of palladium (Pd) with an average grain size of approximately 10 nm under static high pressure was studied. Within the investigated pressure range (0−111 GPa), the crystal structure of palladium remained stable. Analysis of diffraction peak positions and full width at half maximum (FWHM) at each pressure point enables determination of unit cell volume, grain size, and microscopic strain under high-pressure conditions. Fitting with the third-order Birch-Murnaghan equation yields bulk modulus of 288 GPa (hydrostatic) and 290 GPa (non-hydrostatic), and the yield strength is approximately 20 GPa. In addition, by integrating existing literatures, this study systematically explored the influence of size effects on mechanical properties. The yield strength of Pd progressively increases with decreasing grain size, exhibiting a 300% enhancement compared to Pd nanofibers. These findings provide crucial data for the structural design and application of nanocrystalline Pd under extreme conditions.
-
Key words:
- high pressure /
- palladium /
- nanocrystalline metals /
- bulk modulus /
- yield strength
-
图 4 钯的晶胞体积压缩率随压力的变化(实心点为本研究数据点,空心点为其他研究的块体材料数据点,实线和虚线为本研究和文献通过三阶Birch-Murnaghan状态方程拟合的曲线)[9, 30–32]
Figure 4. Pressure-dependent evolution of unit cell volume compression ratio (V/V0) for palladium (Solid symbols denote experimental data from this study; open symbols represent bulk material data from other research; solid and dashed curves correspond to third-order Birch-Murnaghan equation of state fittings from this work and literature, respectively.)[9, 30–32]
Grain size Pressure/GPa B0/GPa $ {B}'_{0} $ Pressure retransmitting medium Ref. Remark 10 nm 0–67.1 288(5) 2.76(24) Argon This study None 10 nm 0–111 290(14) 3.87(47) None This study None 33 nm Tensile response 290 None None Ref. [33] Nanowhisker 100 nm Tensile response 120 None None Ref. [33] Nanowhisker Bulk 0–80 190(3) 5.30(20) None Ref. [9] None Bulk 0–200 197(3) 4.99 (6) Neon Ref. [32] None Theory Theory 195(3) 5.10(10) None Ref. [9] Theory Theory Theory 184 5.38 None Ref. [34] Theory Bulk 0–30 157(3) 9.90(40) Neon gas Ref. [30] None -
[1] 魏志刚, 胡时胜, 李永池, 等. 预扭转钨合金动能弹提高穿甲侵彻威力机理分析 [J]. 兵工学报, 1998, 19(2): 103–107.WEI Z G, HU S S, LI Y C, et al. Penetration mechanism of pre-torqued tungsten heavy alloy projectiles [J]. Acta Armamentarii, 1998, 19(2): 103–107. [2] ESWARAPPA PRAMEELA S, POLLOCK T M, RAABE D, et al. Materials for extreme environments [J]. Nature Reviews Materials, 2023, 8(2): 81–88. doi: 10.1038/s41578-022-00496-z [3] IRIFUNE T, KURIO A, SAKAMOTO S, et al. Correction: ultrahard polycrystalline diamond from graphite [J]. Nature, 2003, 421(6925): 806. doi: 10.1038/421806b [4] XU C, HE D W, WANG H K, et al. Nano-polycrystalline diamond formation under ultra-high pressure [J]. International Journal of Refractory Metals and Hard Materials, 2013, 36: 232–237. doi: 10.1016/j.ijrmhm.2012.09.004 [5] MA Y M, EREMETS M, OGANOV A R, et al. Transparent dense sodium [J]. Nature, 2009, 458(7235): 182–185. doi: 10.1038/nature07786 [6] MAO H K, DING Y, XIAO Y M, et al. Electronic dynamics and plasmons of sodium under compression [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(51): 20434–20437. doi: 10.1073/pnas.1116930108 [7] DIAS R P, SILVERA I F. Observation of the Wigner-Huntington transition to metallic hydrogen [J]. Science, 2017, 355(6326): 715–718. doi: 10.1126/science.aal1579 [8] LOUBEYRE P, OCCELLI F, DUMAS P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen [J]. Nature, 2020, 577(7792): 631–635. doi: 10.1038/s41586-019-1927-3 [9] BATY S R, BURAKOVSKY L, LUSCHER D J, et al. Palladium at high pressure and high temperature: a combined experimental and theoretical study [J]. Journal of Applied Physics, 2024, 135(7): 075103. doi: 10.1063/5.0179469 [10] ERRANDONEA D. High-pressure melting curves of the transition metals Cu, Ni, Pd, and Pt [J]. Physical Review B, 2013, 87(5): 054108. doi: 10.1103/PhysRevB.87.054108 [11] JEONG J W, CHANG K J. Molecular-dynamics simulations for the shock Hugoniot meltings of Cu, Pd and Pt [J]. Journal of Physics: Condensed Matter, 1999, 11(19): 3799–3806. doi: 10.1088/0953-8984/11/19/302 [12] MEYER J D, STRITZKER B. Superconductivity in simple cubic Te-Au alloys produced by ion irradiation [J]. Zeitschrift für Physik B: Condensed Matter, 1979, 36: 47–56. doi: 10.1007/BF01333953 [13] KÖNIG R, SCHINDLER A, HERRMANNSDÖRFER T. Superconductivity of compacted platinum powder at very low temperatures [J]. Physical Review Letters, 1999, 82(22): 4528–4531. doi: 10.1103/PhysRevLett.82.4528 [14] LIU Z L, YANG J H, CAI L C, et al. Structural and thermodynamic properties of compressed palladium: ab initio and molecular dynamics study [J]. Physical Review B, 2011, 83(14): 144113. doi: 10.1103/PhysRevB.83.144113 [15] 刘泽涛, 陈博, 令伟栋, 等. 冲击压缩下金属钯的结构相变 [J]. 物理学报, 2022, 71(3): 037102. doi: 10.7498/aps.71.20211511LIU Z T, CHEN B, LING W D, et al. Phase transitions of palladium under dynamic shock compression [J]. Acta Physica Sinica, 2022, 71(3): 037102. doi: 10.7498/aps.71.20211511 [16] MAO H K, BELL P M, SHANER J W, et al. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar [J]. Journal of Applied Physics, 1978, 49(6): 3276–3283. doi: 10.1063/1.325277 [17] CORDERO Z C, KNIGHT B E, SCHUH C A. Six decades of the Hall-Petch effect: a survey of grain-size strengthening studies on pure metals [J]. International Materials Reviews, 2016, 61(8): 495–512. doi: 10.1080/09506608.2016.1191808 [18] NAIK S N, WALLEY S M. The Hall-Petch and inverse Hall-Petch relations and the hardness of nanocrystalline metals [J]. Journal of Materials Science, 2020, 55(7): 2661–2681. doi: 10.1007/s10853-019-04160-w [19] CHEN J, LU L, LU K. Hardness and strain rate sensitivity of nanocrystalline Cu [J]. Scripta Materialia, 2006, 54(11): 1913–1918. doi: 10.1016/j.scriptamat.2006.02.022 [20] WEERTMAN J R. Hall-Petch strengthening in nanocrystalline metals [J]. Materials Science and Engineering: A, 1993, 166(1/2): 161–167. doi: 10.1016/0921-5093(93)90319-A [21] MEYERS M A, MISHRA A, BENSON D J. Mechanical properties of nanocrystalline materials [J]. Progress in Materials Science, 2006, 51(4): 427–556. doi: 10.1016/j.pmatsci.2005.08.003 [22] SANDERS P G, EASTMAN J A, WEERTMAN J R. Elastic and tensile behavior of nanocrystalline copper and palladium [J]. Acta Materialia, 1997, 45(10): 4019–4025. doi: 10.1016/S1359-6454(97)00092-X [23] 周晓玲, 王潘. 高压力学方法及研究进展 [J]. 高压物理学报, 2023, 37(5): 050101. doi: 10.11858/gywlxb.20230715ZHOU X L, WANG P. Methods and research progress in high pressure mechanics [J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 050101. doi: 10.11858/gywlxb.20230715 [24] MUSTAPHA S, NDAMITSO M M, ABDULKAREEM A S, et al. Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles [J]. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2019, 10(4): 045013. doi: 10.1088/2043-6254/ab52f7 [25] HAMMERSLEY A P, SVENSSON S O, HANFLANDM, et al. Two-dimensional detector software: from real detector to idealised image or two-theta scan [J]. High Pressure Research, 1996, 14(4/5/6): 235–248. doi: 10.1080/08957959608201408 [26] SINGH T B, REY L, GARTIA R K. Applications of PeakFit software in thermoluminescence studies [J]. Indian Journal of Pure & Applied Physics, 2011, 49(5): 297–302. [27] 余建新, 王晓鹏, 崔喜平. 高温环境下材料泊松比测试方法研究 [J]. 实验科学与技术, 2022, 20(1): 28–33. doi: 10.12179/1672-4550.20200474YU J X, WANG X P, CUI X P. Material Poisson’s ratio measurement method at elevated temperatures [J]. Experiment Science and Technology, 2022, 20(1): 28–33. doi: 10.12179/1672-4550.20200474 [28] SMITHELLS C J. Elasticproperties, damping capacity and shape memory alloys [M]//GALE W F, TOTEMEIERT C. Smithells Metals Reference Book. Oxford: Butterworth-Heinemann, 2004: 15-1–15-45. [29] AGOSTA D S, LEISURE R G, FOSTER K, et al. Elastic moduli and internal friction of nanocrystalline Pd and PdSi as a function of temperature [J]. Philosophical Magazine, 2008, 88(6): 949–958. doi: 10.1080/14786430802014662 [30] FEDOTENKO T, DUBROVINSKY L, KHANDARKHAEVA S, et al. Synthesis of palladium carbides and palladium hydride in laser heated diamond anvil cells [J]. Journal of Alloys and Compounds, 2020, 844: 156179. doi: 10.1016/j.jallcom.2020.156179 [31] GUIGUE B, GENESTE G, LERIDON B, et al. An X-ray study of palladium hydrides up to 100 GPa: synthesis and isotopic effects [J]. Journal of Applied Physics, 2020, 127(7): 075901. doi: 10.1063/1.5138697 [32] FROST M, SMITH D, MCBRIDE E E, et al. The equations of state of statically compressed palladium and rhodium [J]. Journal of Applied Physics, 2023, 134(3): 035901. doi: 10.1063/5.0161038 [33] CHEN L Y. Deformation mechanisms in Pd nanowhiskers [D]. Philadelphia: University of Pennsylvania, 2014. [34] RAJU S, MOHANDAS E, RAGHUNATHAN V S. The pressure derivative of bulk modulus of transition metals: an estimation using the method of model potentials and a study of the systematics [J]. Journal of Physics and Chemistry of Solids, 1997, 58(9): 1367–1373. doi: 10.1016/S0022-3697(97)00024-3 [35] SOLLIARD C, FLUELI M. Surface stress and size effect on the lattice parameter in small particles of gold and platinum [J]. Surface Science, 1985, 156: 487–494. doi: 10.1016/0039-6028(85)90610-7 [36] ZHANG J Z, ZHAO Y S, PALOSZ B. Comparative studies of compressibility between nanocrystalline and bulk nickel [J]. Applied Physics Letters, 2007, 90(4): 043112. doi: 10.1063/1.2435325 [37] GU Q F, KRAUSS G, STEURER W, et al. Unexpected high stiffness of Ag and Au nanoparticles [J]. Physical Review Letters, 2008, 100(4): 045502. doi: 10.1103/PhysRevLett.100.045502 [38] CHEN B, PENWELL D, KRUGER M B, et al. Nanocrystalline iron at high pressure [J]. Journal of Applied Physics, 2001, 89(9): 4794–4796. doi: 10.1063/1.1357780 [39] HEMPEL J L, WELLS M D, PARKIN S, et al. Understanding the relationship between the crystal structure and elastic-plastic properties of 0-D organic-inorganic halide perovskites [J]. CrystEngComm, 2025, 27(34): 5743–5751. doi: 10.1039/D5CE00716J [40] SUN S J, FANG Y N, KIESLICH G, et al. Mechanical properties of organic-inorganic halide perovskites, CH3NH3PbX3 (X=I, Br and Cl), by nanoindentation [J]. Journal of Materials Chemistry A, 2015, 3(36): 18450–18455. doi: 10.1039/C5TA03331D [41] KOU H B, GAO Y W, SHAO J X, et al. Temperature-porosity-dependent elastic modulus model for metallic materials [J]. Reviews on Advanced Materials Science, 2022, 61(1): 769–777. doi: 10.1515/rams-2022-0270 [42] PALOSZ B, GIERLOTKA S, STEL’MAKH S, et al. High-pressure high-temperature in situ diffraction studies of nanocrystalline ceramic materials at HASYLAB [J]. Journal of Alloys and Compounds, 1999, 286(1/2): 184–194. doi: 10.1016/S0925-8388(98)01004-4 [43] ZHOU X L, FENG Z Q, ZHU L L, et al. High-pressure strengthening in ultrafine-grained metals [J]. Nature, 2020, 579(7797): 67–72. doi: 10.1038/s41586-020-2036-z [44] SA B, YANG H L, MIAO N H, et al. Pressure-induced destabilization and anomalous lattice distortion in TcO2 [J]. Inorganic Chemistry, 2017, 56(16): 9973–9978. doi: 10.1021/acs.inorgchem.7b01481 [45] IVANISENKO Y, KURMANAEVA L, WEISSMUELLER J, et al. Deformation mechanisms in nanocrystalline palladium at large strains [J]. Acta Materialia, 2009, 57(11): 3391–3401. doi: 10.1016/j.actamat.2009.03.049 [46] VAN SWYGENHOVEN H. Grain boundaries and dislocations [J]. Science, 2002, 296(5565): 66–67. doi: 10.1126/science.1071040 [47] REYNARD B, CARACAS R, CARDON H, et al. High-pressure yield strength of rocksalt structures using quartz Raman piezometry [J]. Comptes Rendus Geoscience, 2019, 351(2/3): 71–79. doi: 10.1016/j.crte.2018.02.001 [48] WU X L, ZHU Y T, WEI Y G, et al. Strong strain hardening in nanocrystalline nickel [J]. Physical Review Letters, 2009, 103(20): 205504. doi: 10.1103/PhysRevLett.103.205504 [49] SHAN Z W, WIEZOREK J M K, STACH E A, et al. Dislocation dynamics in nanocrystalline nickel [J]. Physical Review Letters, 2007, 98(9): 095502. doi: 10.1103/PhysRevLett.98.095502 [50] CHEN M W, MA E, HEMKER K J, et al. Deformation twinning in nanocrystalline aluminum [J]. Science, 2003, 300(5623): 1275–1277. doi: 10.1126/science.1083727 [51] YANG J, DENG W, LI Q, et al. Strength enhancement of nanocrystalline tungsten under high pressure [J]. Matter and Radiation at Extremes, 2020, 5(5): 058401. doi: 10.1063/5.0005395 -

下载: