消失的石英-柯石英路径:基于机器学习模拟的二氧化硅相变机理探究

邓溥 侯瑞 赵英亮 朱升财

邓溥, 侯瑞, 赵英亮, 朱升财. 消失的石英-柯石英路径:基于机器学习模拟的二氧化硅相变机理探究[J]. 高压物理学报, 2026, 40(1): 010103. doi: 10.11858/gywlxb.20251122
引用本文: 邓溥, 侯瑞, 赵英亮, 朱升财. 消失的石英-柯石英路径:基于机器学习模拟的二氧化硅相变机理探究[J]. 高压物理学报, 2026, 40(1): 010103. doi: 10.11858/gywlxb.20251122
DENG Pu, HOU Rui, ZHAO Yingliang, ZHU Shengcai. The Disappearing Quartz-Coesite Path: the Phase Transition Mechanism of Silicon Dioxide from Machine Learning Simulations[J]. Chinese Journal of High Pressure Physics, 2026, 40(1): 010103. doi: 10.11858/gywlxb.20251122
Citation: DENG Pu, HOU Rui, ZHAO Yingliang, ZHU Shengcai. The Disappearing Quartz-Coesite Path: the Phase Transition Mechanism of Silicon Dioxide from Machine Learning Simulations[J]. Chinese Journal of High Pressure Physics, 2026, 40(1): 010103. doi: 10.11858/gywlxb.20251122

消失的石英-柯石英路径:基于机器学习模拟的二氧化硅相变机理探究

doi: 10.11858/gywlxb.20251122
基金项目: 国家自然科学基金(T2522041,22573121);广东省自然科学基金(2025A1515012119)
详细信息
    作者简介:

    邓 溥(2000-),男,硕士研究生,主要从事二氧化硅的相变机理研究. E-mail:dengp7@mail2.sysu.edu.cn

    通讯作者:

    朱升财(1987-),男,博士,副教授,主要从事相变机理的理论及实验研究. E-mail:zhushc@mail.sysu.edu.cn

  • 中图分类号: O521.2

The Disappearing Quartz-Coesite Path: the Phase Transition Mechanism of Silicon Dioxide from Machine Learning Simulations

  • 摘要: 基于高维神经网络势能模型与随机表面行走算法,系统研究了二氧化硅在高压条件下的结构相变机理。首先,构建了覆盖石英、柯石英、斯石英及非晶态的全局势能面,绘制出热力学相图。进一步分析发现,对于石英到斯石英的相变路径,高压下能垒显著降低,表现出较强的动力学可行性;而柯石英至斯石英的相变路径则为单步机制,能垒随压力升高略有上升。在非晶化相变方面,通过采样与识别低对称性结构群,明确了低对称性结构群在石英高压非晶化中的关键作用,揭示了“短程有序—中程无序—拓扑有序”结构作为非晶态的关键特征。值得注意的是,研究过程中未发现有效的石英-柯石英相变路径,进一步研究表明,非晶路径在动力学上的优势“截断”了石英向柯石英的直接演化路径,揭示了石英-柯石英路径缺失的本质原因。该工作系统探究了高压下二氧化硅的晶态与非晶态相变机理,为复杂氧化物的高压模拟研究提供了理论依据和方法范式。

     

  • 图  SiO2的压力-温度相图[16]

    Figure  1.  Pressure-temperature phase diagram of SiO2[16]

    图  SiO2全局势能面等高线图

    Figure  2.  Global PES contour of SiO2

    图  石英至斯石英相变路径与能垒分析

    Figure  3.  Phase transition pathway and energy barrier analysis from quartz to stishovite

    图  石英至斯石英的结构演化

    Figure  4.  Structural evolution from quartz to stishovite

    图  柯石英至斯石英的相变路径与能垒分析

    Figure  5.  Phase transition pathway and energy barrier analysis from coesite to stishovite

    图  低对称性结构群

    Figure  6.  Swarm structure of low symmetry

    图  SLS的多尺度有序性分析

    Figure  7.  Multiscale order analysis of the SLS structures

    图  石英至非晶相S1的相变路径、能垒及配位数分析

    Figure  8.  Phase transition pathway, energy barriers and coordination numbers from quartz to S1

    图  S1的结构分析

    Figure  9.  Structure analysis of S1

    图  10  柯石英和斯石英相对于石英的相对能量随压力的变化关系

    Figure  10.  Relative energies of coesite and stishovite as a function of pressure (relative to quartz)

    图  11  柯石英与SLS在势能面上的位置关系

    Figure  11.  Locations of coesite and SLS on the potential energy surface

    表  1  石英至斯石英的相变在不同压力下的能量分析

    Table  1.   Energy of the quartz-to-stishovite phase transition under different pressures

    Pressure/GPa Energy barrier/[eV/(f. u.)] Final state energy/[eV/(f. u.)]
    5 0.793 0.118
    10 0.581 −0.225
    15 0.402 −0.510
    20 0.261 −0.752
    下载: 导出CSV

    表  2  柯石英至斯石英的相变在不同压力下的能量分析

    Table  2.   Energy of the coesite-to-stishovite phase transition under different pressures

    Pressure/GPa Energy barrier/[eV/(f. u.)] Final state energy/[eV/(f. u.)]
    10 0.107 −0.160
    15 0.118 −0.165
    20 0.127 −0.169
    下载: 导出CSV

    表  3  石英至S1的相变在不同压力下的能量分析

    Table  3.   Energy of the quartz-to-S1 phase transition under different pressures

    Pressure/GPaEnergy barrier/[eV/(f. u.)]Final state energy/[eV/(f. u.)]
    50.5970.452
    100.4620.341
    150.2960.240
    200.1190.111
    下载: 导出CSV
  • [1] HEANEY P J, PREWITT C T, GIBBS G V. Silica: physical behavior, geochemistry and materials applications [M]. Washigton: Mineralogical Society of America, 1994: 309.
    [2] MOLAEI F, SIAVOSHI H. Molecular dynamics studies of thermal conductivity and mechanical properties of single crystalline α-quartz [J]. Solid State Communications, 2020, 320: 114020. doi: 10.1016/j.ssc.2020.114020
    [3] SKELTON A A, FENTER P, KUBICKI J D, et al. Simulations of the quartz (101̅1)/water interface: a comparison of classical force fields, ab initio molecular dynamics, and X-ray reflectivity experiments [J]. The Journal of Physical Chemistry C, 2011, 115(5): 2076–2088. doi: 10.1021/jp109446d
    [4] WANG J, RAJENDRAN A M, DONGARE A M. Atomic scale modeling of shock response of fused silica and α-quartz [J]. Journal of Materials Science, 2015, 50(24): 8128–8141. doi: 10.1007/s10853-015-9386-1
    [5] LOPES P E M, MURASHOV V, TAZI M, et al. Development of an empirical force field for silica. application to the quartz-water interface [J]. The Journal of Physical Chemistry B, 2006, 110(6): 2782–2792. doi: 10.1021/jp055341j
    [6] MARCINKEVIČIUS A, JUODKAZIS S, WATANABE M, et al. Femtosecond laser-assisted three-dimensional microfabrication in silica [J]. Optics Letters, 2001, 26(5): 277. doi: 10.1364/OL.26.000277
    [7] JIANG B Q, XIAO L, HU S F, et al. Optimization and kinetics of electroless Ni-P-B plating of quartz optical fiber [J]. Optical Materials, 2009, 31(10): 1532–1539. doi: 10.1016/j.optmat.2009.02.016
    [8] TAY A, HO W K, SCHAPER C D, et al. Constraint feedforward control for thermal processing of quartz photomasks in microelectronics manufacturing [J]. Journal of Process Control, 2004, 14(1): 31–39. doi: 10.1016/S0959-1524(03)00069-6
    [9] PERRY L A, CORONELL O. Reliable, bench-top measurements of charge density in the active layers of thin-film composite and nanocomposite membranes using quartz crystal microbalance technology [J]. Journal of Membrane Science, 2013, 429: 23–33. doi: 10.1016/j.memsci.2012.11.023
    [10] HOU W J, ZHANG Y M, LIU T, et al. Graphene oxide coated quartz sand as a high performance adsorption material in the application of water treatment [J]. RSC Advances, 2015, 5(11): 8037–8043. doi: 10.1039/C4RA11430B
    [11] BEATO P, KRAEHNERT R, ENGELSCHALT S, et al. A micro-structured quartz reactor for kinetic and in situ spectroscopic studies in heterogeneous catalysis [J]. Chemical Engineering Journal, 2008, 135: S247–S253. doi: 10.1016/j.cej.2007.07.011
    [12] DJURABEKOVA F, BACKHOLM M, BACKMAN M, et al. Amorphization of α-quartz and comparative study of defects in amorphized quartz and Si nanocrystals embedded in amorphous silica [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(19): 3095–3098. doi: 10.1016/j.nimb.2010.05.056
    [13] NISHIYAMA N, WAKAI F, OHFUJI H, et al. Fracture-induced amorphization of polycrystalline SiO2 stishovite: a potential platform for toughening in ceramics [J]. Scientific Reports, 2014, 4(1): 6558. doi: 10.1038/srep06558
    [14] BADRO J, BARRAT J L, GILLET P. Numerical simulation of α-quartz under nonhydrostatic compression: memory glass and five-coordinated crystalline phases [J]. Physical Review Letters, 1996, 76(5): 772–775. doi: 10.1103/PhysRevLett.76.772
    [15] ZHANG X J, SHANG C, LIU Z P. Pressure-induced silica quartz amorphization studied by iterative stochastic surface walking reaction sampling [J]. Physical Chemistry Chemical Physics, 2017, 19(6): 4725–4733. doi: 10.1039/C6CP06895B
    [16] MACHON D, MEERSMAN F, WILDING M C, et al. Pressure-induced amorphization and polyamorphism: inorganic and biochemical systems [J]. Progress in Materials Science, 2014, 61: 216–282. doi: 10.1016/j.pmatsci.2013.12.002
    [17] TOLÉDANO P, MACHON D. Structural mechanism leading to a ferroelastic glass state: interpretation of amorphization under pressure [J]. Physical Review B, 2005, 71(2): 024210. doi: 10.1103/PhysRevB.71.024210
    [18] DEMUTH T, JEANVOINE Y, HAFNER J, et al. Polymorphism in silica studied in the local density and generalized-gradient approximations [J]. Journal of Physics: Condensed Matter, 1999, 11(19): 3833–3874. doi: 10.1088/0953-8984/11/19/306
    [19] LAPITSKAYA V A, KUZNETSOVA T A, KHUDOLEY A L, et al. Influence of polishing technique on crack resistance of quartz plates [J]. International Journal of Fracture, 2021, 231(1): 61–77. doi: 10.1007/s10704-021-00564-5
    [20] WRIGHT A F, LEHMANN M S. The structure of quartz at 25 and 590 ℃ determined by neutron diffraction [J]. Journal of Solid State Chemistry, 1981, 36(3): 371–380. doi: 10.1016/0022-4596(81)90449-7
    [21] MILTON K L, DURRANT T R, COBOS FREIRE T, et al. Difference in structure and electronic properties of oxygen vacancies in α-quartz and α-cristobalite phases of SiO2 [J]. Materials, 2023, 16(4): 1382. doi: 10.3390/ma16041382
    [22] MO C K, ZHAO J L, ZHANG D X. Real-time measurement of mechanical behavior of granite during heating-cooling cycle: a mineralogical perspective [J]. Rock Mechanics and Rock Engineering, 2022, 55(7): 4403–4422. doi: 10.1007/s00603-022-02867-y
    [23] TANG C H, ZHU J X, LI Z H, et al. Surface chemistry and reactivity of SiO2 polymorphs: a comparative study on α-quartz and α-cristobalite [J]. Applied Surface Science, 2015, 355: 1161–1167. doi: 10.1016/j.apsusc.2015.07.214
    [24] TRACY S J, TURNEAURE S J, DUFFY T S. Structural response of α-quartz under plate-impact shock compression [J]. Science Advances, 2020, 6(35): eabb3913. doi: 10.1126/sciadv.abb3913
    [25] YURTSEVEN H, ATEŞ S. Resonant frequency shifts related to the elastic constants near the α-β transition in quartz [J]. Journal of Molecular Structure, 2019, 1179: 421–424. doi: 10.1016/j.molstruc.2018.11.044
    [26] YANG Z Y, XU X L, DOUGLAS J F, et al. Molecular dynamics investigation of the pressure dependence of glass formation in a charged polymer melt [J]. Macromolecules, 2023, 56(11): 4049–4064. doi: 10.1021/acs.macromol.3c00317
    [27] HUANG S D, SHANG C, ZHANG X J, et al. Material discovery by combining stochastic surface walking global optimization with a neural network [J]. Chemical Science, 2017, 8(9): 6327–6337. doi: 10.1039/C7SC01459G
    [28] HUANG S D, SHANG C, KANG P L, et al. LASP: fast global potential energy surface exploration [J]. WIREs Computational Molecular Science, 2019, 9(6): e1415. doi: 10.1002/wcms.1415
    [29] LIN Y H, HU Q Y, WALTER M J, et al. Hydrous SiO2 in subducted oceanic crust and H2O transport to the core-mantle boundary [J]. Earth and Planetary Science Letters, 2022, 594: 117708. doi: 10.1016/j.jpgl.2022.117708
    [30] HUANG S D, SHANG C, KANG P L, et al. Atomic structure of boron resolved using machine learning and global sampling [J]. Chemical Science, 2018, 9(46): 8644–8655. doi: 10.1039/C8SC03427C
    [31] ZHU S C, CHEN G W, ZHANG D Z, et al. Topological ordering of memory glass on extended length scales [J]. Journal of the American Chemical Society, 2022, 144(16): 7414–7421. doi: 10.1021/jacs.2c01717
    [32] ZHANG X J, SHANG C, LIU Z P. Double-ended surface walking method for pathway building and transition state location of complex reactions [J]. Journal of Chemical Theory and Computation, 2013, 9(12): 5745–5753. doi: 10.1021/ct4008475
    [33] CHEN T, XIE J S, WEN B, et al. Inhibition of defect-induced α-to-δ phase transition for efficient and stable formamidinium perovskite solar cells [J]. Nature Communications, 2023, 14(1): 6125. doi: 10.1038/s41467-023-41853-y
    [34] GUET C, HOBZA P, SPEIGELMAN F, et al. Atomic clusters and nanoparticles: agregatsatomiques et nanoparticules [M]. Berlin: Springer, 2001.
    [35] PARRISH K, HU Q, ZHU Q Y. PyLRO: a python calculator for analyzing long-range structural order [J]. Journal of Applied Physics, 2025, 137(2): 025101. doi: 10.1063/5.0244012
    [36] CAO X Y, HAN S S, LI J W, et al. Kinetic and thermodynamic transition pathways of silica by machine learning: implication for meteorite impacts [J]. Journal of Geophysical Research: Solid Earth, 2024, 129(3): e2024JB028656. doi: 10.1029/2024JB028656
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  43
  • PDF下载量:  18
出版历程
  • 收稿日期:  2025-07-04
  • 修回日期:  2025-08-18
  • 网络出版日期:  2025-08-21
  • 刊出日期:  2026-01-05

目录

    /

    返回文章
    返回