超高压力作用下爆破近区花岗岩的破碎规律

胡家念 方石 张浩天 陈翔 杨刚 董千 杜宇翔 贾永胜

胡家念, 方石, 张浩天, 陈翔, 杨刚, 董千, 杜宇翔, 贾永胜. 超高压力作用下爆破近区花岗岩的破碎规律[J]. 高压物理学报, 2025, 39(11): 110109. doi: 10.11858/gywlxb.20251113
引用本文: 胡家念, 方石, 张浩天, 陈翔, 杨刚, 董千, 杜宇翔, 贾永胜. 超高压力作用下爆破近区花岗岩的破碎规律[J]. 高压物理学报, 2025, 39(11): 110109. doi: 10.11858/gywlxb.20251113
HU Jianian, FANG Shi, ZHANG Haotian, CHEN Xiang, YANG Gang, DONG Qian, DU Yuxiang, JIA Yongsheng. Crushing Law of Rocks in the Area Near Blasting Source under Ultra-High Pressure[J]. Chinese Journal of High Pressure Physics, 2025, 39(11): 110109. doi: 10.11858/gywlxb.20251113
Citation: HU Jianian, FANG Shi, ZHANG Haotian, CHEN Xiang, YANG Gang, DONG Qian, DU Yuxiang, JIA Yongsheng. Crushing Law of Rocks in the Area Near Blasting Source under Ultra-High Pressure[J]. Chinese Journal of High Pressure Physics, 2025, 39(11): 110109. doi: 10.11858/gywlxb.20251113

超高压力作用下爆破近区花岗岩的破碎规律

doi: 10.11858/gywlxb.20251113
基金项目: 国家自然科学基金(12402428,52108368);湖北省自然科学基金(2024AFB432);江汉大学校级科研项目(2023JCYJ05)
详细信息
    作者简介:

    胡家念(1993-),男,博士,副教授,主要从事爆炸与冲击动力学应用研究. E-mail:hjn@jhun.edu.cn

    通讯作者:

    贾永胜(1970-),男,博士,教授,主要从事精细爆破控制理论与技术研究. E-mail:jason03566@163.com

  • 中图分类号: O521.9; O347

Crushing Law of Rocks in the Area Near Blasting Source under Ultra-High Pressure

  • 摘要: 针对工程中爆破近区岩石过度破碎对炸药能量损耗超过50%的问题,通过试验对爆破近区超高压力作用下岩石的过度破碎规律进行深入研究。以花岗岩为研究对象,通过软回收爆破近区不同压力下被破碎的花岗岩,并基于交互式机器学习的图像分割工具,统计分析超高压力作用下被破碎微米级粒径岩石的分布状态,重点分析不同加载压力下花岗岩的弹塑性变化,探讨了破碎过程中的能量分布。研究发现,爆破近区的超高压力导致花岗岩发生复杂的破碎现象。通过试验明确了花岗岩随压力增加由台阶状转变为微裂纹的破碎特性,表明5.50 GPa压力作用下花岗岩的破碎能不超过总冲击能量的23.68%,随着冲击压力的增加,岩石的破碎粒度显著减小,破碎能占比显著降低。研究成果可为爆破过程的精细模拟、优化爆破工程设计提供理论支持和实际应用指导。

     

  • 图  花岗岩岩样

    Figure  1.  Granite rock sample

    图  花岗岩的X射线衍射图谱

    Figure  2.  X-ray diffraction map of granite

    图  冲击试验软回收系统

    Figure  3.  Soft recovery target device of impact test

    图  二级轻气炮动态冲击试验示意图

    Figure  4.  Schematic diagram of two-stage light-gas gun dynamic impact test

    图  机器学习工具TWS流程图

    Figure  5.  Machine learning tool TWS flowchart

    图  花岗岩破碎块体识别后示意图

    Figure  6.  Schematics after granite broken block identification

    图  不同冲击压力下花岗岩破碎的SEM形貌

    Figure  7.  SEM images of granite fracture under different impact pressures

    图  不同冲击压力下花岗岩破碎粒度的分布

    Figure  8.  Granite fracture particle size distribution under different impact pressures

    图  不同冲击压力下花岗岩颗粒级配曲线

    Figure  9.  Gradual curves of granite particles under different impact pressures

    图  10  不同冲击压力下花岗岩的破碎能量

    Figure  10.  Granite fracture energy under different impact pressures

    图  11  弹塑性与相变分析

    Figure  11.  Elastoplastic and phase transition analysis

    表  1  花岗岩的主要成分和参数

    Table  1.   Main components and parameters of granite

    Mass fraction/% Density/(g·cm−3) Sound velocity/(km·s−1)
    Quartz Kaolinite Albite Muscovite
    14.3 9.5 62.5 13.6 2.64 4.58
    下载: 导出CSV

    表  2  花岗岩冲击破碎相关参数

    Table  2.   Related parameters of granite impact crushing

    Specimen Diameter/mm Height/mm Mass/g Shock velocity/(m·s−1) Shock pressure/GPa
    1 10.01 2.03 0.42 290 5.50
    2 9.96 1.99 0.41 679 13.65
    3 10.04 1.98 0.41 978 20.51
    4 9.98 2.01 0.42 1 479 33.17
    下载: 导出CSV

    表  3  不同冲击压力下花岗岩破碎回收试验颗粒粒径分布

    Table  3.   Particle size distribution of granite crushing and recovery tests under different impact pressures

    5.50 GPa 13.65 GPa 20.51 GPa 33.17 GPa
    Size/μm Proportion/% Size/μm Proportion/% Size/μm Proportion/% Size/μm Proportion/%
    0–50 32.63 0–25 7.30 0–25 17.71 0–15 16.33
    50–100 30.24 25–50 38.37 25–50 56.91 15–30 48.37
    100–150 1.47 50–75 20.54 50–75 17.08 30–45 21.54
    150–200 5.09 75–100 13.58 75–100 4.62 45–60 7.32
    200–300 8.38 100–150 11.38 100–150 2.59 60–100 5.08
    >300 10.19 >150 8.83 >150 1.09 >100 1.36
    下载: 导出CSV

    表  4  花岗岩破碎能量分布

    Table  4.   Distribution of granite crushing energy

    Impact pressure/GPa $ {E}_{\mathrm{F}} $/J $ {E}_{\mathrm{P}} $/J Impact energy/J Crushing energy fraction/%
    5.50 13.33 14.48 117.44 23.68
    13.65 21.37 36.99 480.04 12.16
    20.51 28.68 69.13 865.54 11.30
    33.17 38.51 73.44 1635.21 6.80
    下载: 导出CSV
  • [1] YE Z W, YANG J H, YAO C, et al. Attenuation characteristics of shock waves in drilling and blasting based on viscoelastic wave theory [J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 171: 105573. doi: 10.1016/j.ijrmms.2023.105573
    [2] PAL ROY P. Emerging trends in drilling and blasting technology: concerns and commitments [J]. Arabian Journal of Geosciences, 2021, 14(7): 652. doi: 10.1007/s12517-021-06949-z
    [3] NIU W J, FENG X T, YAO Z B, et al. Types and occurrence time of rockbursts in tunnel affected by geological conditions and drilling & blasting procedures [J]. Engineering Geology, 2022, 303: 106671. doi: 10.1016/j.enggeo.2022.106671
    [4] DING C X, YANG R S, LEI Z, et al. Fractal damage and crack propagation in decoupled charge blasting [J]. Soil Dynamics and Earthquake Engineering, 2021, 141: 106503. doi: 10.1016/j.soildyn.2020.106503
    [5] LI X H, ZHU Z M, WANG M, et al. Numerical study on the behavior of blasting in deep rock masses [J]. Tunnelling and Underground Space Technology, 2021, 113: 103968. doi: 10.1016/j.tust.2021.103968
    [6] WANG Z L, WANG H C, WANG J G, et al. Finite element analyses of constitutive models performance in the simulation of blast-induced rock cracks [J]. Computers and Geotechnics, 2021, 135: 104172. doi: 10.1016/j.compgeo.2021.104172
    [7] SILVA J, WORSEY T, LUSK B. Practical assessment of rock damage due to blasting [J]. International Journal of Mining Science and Technology, 2019, 29(3): 379–385. doi: 10.1016/j.ijmst.2018.11.003
    [8] SINGH P K, ROY M P, PASWAN R K, et al. Rock fragmentation control in opencast blasting [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(2): 225–237. doi: 10.1016/j.jrmge.2015.10.005
    [9] TAO J, YANG X G, LI H T, et al. Numerical investigation of blast-induced rock fragmentation [J]. Computers and Geotechnics, 2020, 128: 103846. doi: 10.1016/j.compgeo.2020.103846
    [10] SHEN W G, ZHAO T, CROSTA G B, et al. Analysis of impact-induced rock fragmentation using a discrete element approach [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 98: 33–38. doi: 10.1016/j.ijrmms.2017.07.014
    [11] SAADATI M, FORQUIN P, WEDDFELT K, et al. Granite rock fragmentation at percussive drilling-experimental and numerical investigation [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(8): 828–843. doi: 10.1002/nag.2235
    [12] YANG R S, ZUO J J, MA L W, et al. Analysis of explosion wave interactions and rock breaking effects during dual initiation [J]. International Journal of Minerals, Metallurgy and Materials, 2024, 31(8): 1788–1798. doi: 10.1007/s12613-024-2830-y
    [13] ANAS S M, ALAM M, UMAIR M. Air-blast and ground shockwave parameters, shallow underground blasting, on the ground and buried shallow underground blast-resistant shelters: a review [J]. International Journal of Protective Structures, 2022, 13(1): 99–139. doi: 10.1177/20414196211048910
    [14] YE Z W, CHEN M, YI C P, et al. Quantitative study of the action on rock mass failure under the shock wave and gas pressure in bench blasting [J]. International Journal of Geomechanics, 2023, 23(9): 04023135. doi: 10.1061/IJGNAI.GMENG-8175
    [15] LI X F, LI H B, ZHANG Q B, et al. Dynamic fragmentation of rock material: characteristic size, fragment distribution and pulverization law [J]. Engineering Fracture Mechanics, 2018, 199: 739–759. doi: 10.1016/j.engfracmech.2018.06.024
    [16] KABWE E. Velocity of detonation measurement and fragmentation analysis to evaluate blasting efficacy [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(3): 523–533. doi: 10.1016/j.jrmge.2017.12.003
    [17] ZHANG K, CAO P, MA G W, et al. Strength, fragmentation and fractal properties of mixed flaws [J]. Acta Geotechnica, 2016, 11(4): 901–912. doi: 10.1007/s11440-015-0403-y
    [18] 陈美多, 张祥林, 袁良柱, 等. 岩石界面的动态剪切扩散行为 [J]. 爆炸与冲击, 2024, 44(8): 081422. doi: 10.11883/bzycj-2023-0469

    CHEN M D, ZHANG X L, YUAN L Z, et al. Dynamic shear diffusion behavior at rock interfaces [J]. Explosion and Shock Waves, 2024, 44(8): 081422. doi: 10.11883/bzycj-2023-0469
    [19] 孙鹏昌, 杨广栋, 卢文波, 等. 考虑岩体破坏分区的岩石爆破爆炸荷载历程研究 [J]. 爆炸与冲击, 2024, 44(3): 035201. doi: 10.11883/bzycj-2023-0206

    SUN P C, YANG G D, LU W B, et al. A study on explosive load history of rock blasting considering rock failure zones [J]. Explosion and Shock Waves, 2024, 44(3): 035201. doi: 10.11883/bzycj-2023-0206
    [20] WANG J, MA L, ZHAO F, et al. Dynamic strain field for granite specimen under SHPB impact tests based on stress wave propagation [J]. Underground Space, 2022, 7(5): 767–785. doi: 10.1016/j.undsp.2021.11.010
    [21] TANG W D, YOU Y Y, HU F, et al. Experimental study on SHPB dynamic mechanical response in different damage zones of rock under blast load [J]. Shock and Vibration, 2022(1): 3820921. doi: 10.1155/2022/3820921
    [22] ZHANG X J, YAO W J, WANG X M, et al. Experimental and numerical investigation of the damage characteristics of rocks under ballistic penetration [J]. Applied Sciences, 2022, 12(12): 6120. doi: 10.3390/app12126120
    [23] 王志亮, 汪大为, 汪书敏, 等. 循环冲击下大理岩的损伤力学行为及能量耗散特性 [J]. 爆炸与冲击, 2024, 44(4): 043104. doi: 10.11883/bzycj-2023-0243

    WANG Z L, WANG D W, WANG S M, et al. Dynamic behaviors and energy dissipation characteristics of marble under cyclic impact loading [J]. Explosion and Shock Waves, 2024, 44(4): 043104. doi: 10.11883/bzycj-2023-0243
    [24] 王晓峰, 吴飚, 刘晶波, 等. 花岗岩高压状态方程实验研究 [J]. 工程力学, 2020, 37(Suppl 1): 237–241. doi: 10.6052/j.issn.1000-4750.2019.04.S044

    WANG X F, WU B, LIU J B, et al. Experimental research on the equation of state of granite at high pressure [J]. Engineering Mechanics, 2020, 37(Suppl 1): 237–241. doi: 10.6052/j.issn.1000-4750.2019.04.S044
    [25] 王明洋, 李杰, 李海波, 等. 岩石的动态压缩行为与超高速动能弹毁伤效应计算 [J]. 爆炸与冲击, 2018, 38(6): 1200–1217. doi: 10.11883/bzycj-2018-0173

    WANG M Y, LI J, LI H B, et al. Dynamic compression behavior of rock and simulation of damage effects of hypervelocity kinetic energy bomb [J]. Explosion and Shock Waves, 2018, 38(6): 1200–1217. doi: 10.11883/bzycj-2018-0173
    [26] 谭华. 实验冲击波物理导引 [M]. 北京: 国防工业出版社, 2007.

    TAN H. Introduction to experimental shock-wave physics [M]. Beijing: National Defense Industry Press, 2007.
    [27] 冷振东, 卢文波, 严鹏, 等. 基于粉碎区控制的钻孔爆破岩石-炸药匹配方法 [J]. 中国工程科学, 2014, 16(11): 28–35, 47. doi: 10.3969/j.issn.1009-1742.2014.11.004

    LENG Z D, LU W B, YAN P, et al. A new method of rock-explosive matching in drilling and blasting based on reasonable control of the crushed zone [J]. Engineering Sciences, 2014, 16(11): 28–35, 47. doi: 10.3969/j.issn.1009-1742.2014.11.004
    [28] 李干, 李杰, 宋春明, 等. 花岗岩的动态力学性能、本构模型与状态方程研究 [J]. 力学与实践, 2023, 45(5): 952–959. doi: 10.6052/1000-0879-23-337

    LI G, LI J, SONG C M, et al. Research on dynamic mechanical properties, constitutive models and state equations of granite [J]. Mechanics in Engineering, 2023, 45(5): 952–959. doi: 10.6052/1000-0879-23-337
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  63
  • PDF下载量:  25
出版历程
  • 收稿日期:  2025-06-17
  • 修回日期:  2025-08-13
  • 录用日期:  2025-09-23
  • 网络出版日期:  2025-08-15
  • 刊出日期:  2025-11-05

目录

    /

    返回文章
    返回