Crushing Law of Rocks in the Area Near Blasting Source under Ultra-High Pressure
-
摘要: 针对工程中爆破近区岩石过度破碎对炸药能量损耗超过50%的问题,通过试验对爆破近区超高压力作用下岩石的过度破碎规律进行深入研究。以花岗岩为研究对象,通过软回收爆破近区不同压力下被破碎的花岗岩,并基于交互式机器学习的图像分割工具,统计分析超高压力作用下被破碎微米级粒径岩石的分布状态,重点分析不同加载压力下花岗岩的弹塑性变化,探讨了破碎过程中的能量分布。研究发现,爆破近区的超高压力导致花岗岩发生复杂的破碎现象。通过试验明确了花岗岩随压力增加由台阶状转变为微裂纹的破碎特性,表明5.50 GPa压力作用下花岗岩的破碎能不超过总冲击能量的23.68%,随着冲击压力的增加,岩石的破碎粒度显著减小,破碎能占比显著降低。研究成果可为爆破过程的精细模拟、优化爆破工程设计提供理论支持和实际应用指导。Abstract: Addressing the engineering challenge where excessive rock fragmentation in the area near blasting source leads to over 50% energy loss of explosives, this study conducts an in-depth experimental investigation into the mechanism of rock over-fragmentation under ultra-high pressure conditions. Using granite as the research subject, soft-recovery techniques were employed to collect fragmented granite samples from the near-blasting area under varying pressures. Statistical analysis of micron-sized fragment distribution under ultra-high pressure was performed via an interactive machine learning-based image segmentation tool, with a focus on elucidating elastoplastic transitions in granite under different loading pressures and energy distribution during fragmentation. The results reveal that ultra-high pressure in the near-blasting area induces complex fracture phenomena in granite. Experiments demonstrate a shift from stepped fracture patterns to micro-cracking characteristics with increasing pressure, indicating that fragmentation energy accounts for no more than 23.68% of the total impact energy at 5.50 GPa. As impact pressure rises, rock fragment size decreases significantly while the proportion of fragmentation energy declines substantially. This research provides theoretical support and practical guidance for high-fidelity simulation of blasting processes and optimized blast design
-
Key words:
- near-blasting area /
- granite /
- fragmentation /
- particle size /
- energy distribution
-
表 1 花岗岩的主要成分和参数
Table 1. Main components and parameters of granite
Mass fraction/% Density/(g·cm−3) Sound velocity/(km·s−1) Quartz Kaolinite Albite Muscovite 14.3 9.5 62.5 13.6 2.64 4.58 表 2 花岗岩冲击破碎相关参数
Table 2. Related parameters of granite impact crushing
Specimen Diameter/mm Height/mm Mass/g Shock velocity/(m·s−1) Shock pressure/GPa 1 10.01 2.03 0.42 290 5.50 2 9.96 1.99 0.41 679 13.65 3 10.04 1.98 0.41 978 20.51 4 9.98 2.01 0.42 1 479 33.17 表 3 不同冲击压力下花岗岩破碎回收试验颗粒粒径分布
Table 3. Particle size distribution of granite crushing and recovery tests under different impact pressures
5.50 GPa 13.65 GPa 20.51 GPa 33.17 GPa Size/μm Proportion/% Size/μm Proportion/% Size/μm Proportion/% Size/μm Proportion/% 0–50 32.63 0–25 7.30 0–25 17.71 0–15 16.33 50–100 30.24 25–50 38.37 25–50 56.91 15–30 48.37 100–150 1.47 50–75 20.54 50–75 17.08 30–45 21.54 150–200 5.09 75–100 13.58 75–100 4.62 45–60 7.32 200–300 8.38 100–150 11.38 100–150 2.59 60–100 5.08 >300 10.19 >150 8.83 >150 1.09 >100 1.36 表 4 花岗岩破碎能量分布
Table 4. Distribution of granite crushing energy
Impact pressure/GPa $ {E}_{\mathrm{F}} $/J $ {E}_{\mathrm{P}} $/J Impact energy/J Crushing energy fraction/% 5.50 13.33 14.48 117.44 23.68 13.65 21.37 36.99 480.04 12.16 20.51 28.68 69.13 865.54 11.30 33.17 38.51 73.44 1635.21 6.80 -
[1] YE Z W, YANG J H, YAO C, et al. Attenuation characteristics of shock waves in drilling and blasting based on viscoelastic wave theory [J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 171: 105573. doi: 10.1016/j.ijrmms.2023.105573 [2] PAL ROY P. Emerging trends in drilling and blasting technology: concerns and commitments [J]. Arabian Journal of Geosciences, 2021, 14(7): 652. doi: 10.1007/s12517-021-06949-z [3] NIU W J, FENG X T, YAO Z B, et al. Types and occurrence time of rockbursts in tunnel affected by geological conditions and drilling & blasting procedures [J]. Engineering Geology, 2022, 303: 106671. doi: 10.1016/j.enggeo.2022.106671 [4] DING C X, YANG R S, LEI Z, et al. Fractal damage and crack propagation in decoupled charge blasting [J]. Soil Dynamics and Earthquake Engineering, 2021, 141: 106503. doi: 10.1016/j.soildyn.2020.106503 [5] LI X H, ZHU Z M, WANG M, et al. Numerical study on the behavior of blasting in deep rock masses [J]. Tunnelling and Underground Space Technology, 2021, 113: 103968. doi: 10.1016/j.tust.2021.103968 [6] WANG Z L, WANG H C, WANG J G, et al. Finite element analyses of constitutive models performance in the simulation of blast-induced rock cracks [J]. Computers and Geotechnics, 2021, 135: 104172. doi: 10.1016/j.compgeo.2021.104172 [7] SILVA J, WORSEY T, LUSK B. Practical assessment of rock damage due to blasting [J]. International Journal of Mining Science and Technology, 2019, 29(3): 379–385. doi: 10.1016/j.ijmst.2018.11.003 [8] SINGH P K, ROY M P, PASWAN R K, et al. Rock fragmentation control in opencast blasting [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(2): 225–237. doi: 10.1016/j.jrmge.2015.10.005 [9] TAO J, YANG X G, LI H T, et al. Numerical investigation of blast-induced rock fragmentation [J]. Computers and Geotechnics, 2020, 128: 103846. doi: 10.1016/j.compgeo.2020.103846 [10] SHEN W G, ZHAO T, CROSTA G B, et al. Analysis of impact-induced rock fragmentation using a discrete element approach [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 98: 33–38. doi: 10.1016/j.ijrmms.2017.07.014 [11] SAADATI M, FORQUIN P, WEDDFELT K, et al. Granite rock fragmentation at percussive drilling-experimental and numerical investigation [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(8): 828–843. doi: 10.1002/nag.2235 [12] YANG R S, ZUO J J, MA L W, et al. Analysis of explosion wave interactions and rock breaking effects during dual initiation [J]. International Journal of Minerals, Metallurgy and Materials, 2024, 31(8): 1788–1798. doi: 10.1007/s12613-024-2830-y [13] ANAS S M, ALAM M, UMAIR M. Air-blast and ground shockwave parameters, shallow underground blasting, on the ground and buried shallow underground blast-resistant shelters: a review [J]. International Journal of Protective Structures, 2022, 13(1): 99–139. doi: 10.1177/20414196211048910 [14] YE Z W, CHEN M, YI C P, et al. Quantitative study of the action on rock mass failure under the shock wave and gas pressure in bench blasting [J]. International Journal of Geomechanics, 2023, 23(9): 04023135. doi: 10.1061/IJGNAI.GMENG-8175 [15] LI X F, LI H B, ZHANG Q B, et al. Dynamic fragmentation of rock material: characteristic size, fragment distribution and pulverization law [J]. Engineering Fracture Mechanics, 2018, 199: 739–759. doi: 10.1016/j.engfracmech.2018.06.024 [16] KABWE E. Velocity of detonation measurement and fragmentation analysis to evaluate blasting efficacy [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(3): 523–533. doi: 10.1016/j.jrmge.2017.12.003 [17] ZHANG K, CAO P, MA G W, et al. Strength, fragmentation and fractal properties of mixed flaws [J]. Acta Geotechnica, 2016, 11(4): 901–912. doi: 10.1007/s11440-015-0403-y [18] 陈美多, 张祥林, 袁良柱, 等. 岩石界面的动态剪切扩散行为 [J]. 爆炸与冲击, 2024, 44(8): 081422. doi: 10.11883/bzycj-2023-0469CHEN M D, ZHANG X L, YUAN L Z, et al. Dynamic shear diffusion behavior at rock interfaces [J]. Explosion and Shock Waves, 2024, 44(8): 081422. doi: 10.11883/bzycj-2023-0469 [19] 孙鹏昌, 杨广栋, 卢文波, 等. 考虑岩体破坏分区的岩石爆破爆炸荷载历程研究 [J]. 爆炸与冲击, 2024, 44(3): 035201. doi: 10.11883/bzycj-2023-0206SUN P C, YANG G D, LU W B, et al. A study on explosive load history of rock blasting considering rock failure zones [J]. Explosion and Shock Waves, 2024, 44(3): 035201. doi: 10.11883/bzycj-2023-0206 [20] WANG J, MA L, ZHAO F, et al. Dynamic strain field for granite specimen under SHPB impact tests based on stress wave propagation [J]. Underground Space, 2022, 7(5): 767–785. doi: 10.1016/j.undsp.2021.11.010 [21] TANG W D, YOU Y Y, HU F, et al. Experimental study on SHPB dynamic mechanical response in different damage zones of rock under blast load [J]. Shock and Vibration, 2022(1): 3820921. doi: 10.1155/2022/3820921 [22] ZHANG X J, YAO W J, WANG X M, et al. Experimental and numerical investigation of the damage characteristics of rocks under ballistic penetration [J]. Applied Sciences, 2022, 12(12): 6120. doi: 10.3390/app12126120 [23] 王志亮, 汪大为, 汪书敏, 等. 循环冲击下大理岩的损伤力学行为及能量耗散特性 [J]. 爆炸与冲击, 2024, 44(4): 043104. doi: 10.11883/bzycj-2023-0243WANG Z L, WANG D W, WANG S M, et al. Dynamic behaviors and energy dissipation characteristics of marble under cyclic impact loading [J]. Explosion and Shock Waves, 2024, 44(4): 043104. doi: 10.11883/bzycj-2023-0243 [24] 王晓峰, 吴飚, 刘晶波, 等. 花岗岩高压状态方程实验研究 [J]. 工程力学, 2020, 37(Suppl 1): 237–241. doi: 10.6052/j.issn.1000-4750.2019.04.S044WANG X F, WU B, LIU J B, et al. Experimental research on the equation of state of granite at high pressure [J]. Engineering Mechanics, 2020, 37(Suppl 1): 237–241. doi: 10.6052/j.issn.1000-4750.2019.04.S044 [25] 王明洋, 李杰, 李海波, 等. 岩石的动态压缩行为与超高速动能弹毁伤效应计算 [J]. 爆炸与冲击, 2018, 38(6): 1200–1217. doi: 10.11883/bzycj-2018-0173WANG M Y, LI J, LI H B, et al. Dynamic compression behavior of rock and simulation of damage effects of hypervelocity kinetic energy bomb [J]. Explosion and Shock Waves, 2018, 38(6): 1200–1217. doi: 10.11883/bzycj-2018-0173 [26] 谭华. 实验冲击波物理导引 [M]. 北京: 国防工业出版社, 2007.TAN H. Introduction to experimental shock-wave physics [M]. Beijing: National Defense Industry Press, 2007. [27] 冷振东, 卢文波, 严鹏, 等. 基于粉碎区控制的钻孔爆破岩石-炸药匹配方法 [J]. 中国工程科学, 2014, 16(11): 28–35, 47. doi: 10.3969/j.issn.1009-1742.2014.11.004LENG Z D, LU W B, YAN P, et al. A new method of rock-explosive matching in drilling and blasting based on reasonable control of the crushed zone [J]. Engineering Sciences, 2014, 16(11): 28–35, 47. doi: 10.3969/j.issn.1009-1742.2014.11.004 [28] 李干, 李杰, 宋春明, 等. 花岗岩的动态力学性能、本构模型与状态方程研究 [J]. 力学与实践, 2023, 45(5): 952–959. doi: 10.6052/1000-0879-23-337LI G, LI J, SONG C M, et al. Research on dynamic mechanical properties, constitutive models and state equations of granite [J]. Mechanics in Engineering, 2023, 45(5): 952–959. doi: 10.6052/1000-0879-23-337 -

下载: